简单尝试:ChatGLM-6B + Stable diffusion管道连接

这篇具有很好参考价值的文章主要介绍了简单尝试:ChatGLM-6B + Stable diffusion管道连接。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

核心思想是:

1. 抛去算法设计方面,仅从工程角度考虑的话,Stable diffusion的潜力挖掘几乎完全受输入文字影响。

2. BLIP2所代表的一类多模态模型走的路线是"扩展赋能LLM模型",思路简单清晰,收益明显。LLM + Stable diffusion的问题应该也不大。

3. ChatGLM-6B 和 Stable diffusion都有huggingface中的pipeline,做个实验也不困难。

4. 这里只验证了基本管道连接的效果,如果效果还不错,那将还会有很多可玩的东西,如从LLM的LoRA、P-Tuning微调方面入手。感兴趣的话留意之后更新。

操作:

1. 安装ChatGLM-6B:GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型

2. 赋能ChatGLM-6B模板

Q:

以下提示用于指导Al绘画模型创建图像。它们包括人物外观、背景、颜色和光影效果,以及图像的主题和风格等各种细节。这些提示的格式通常包括带权重的数字括号,用于指定某些细节的重要性或强调。例如,"(杰作:1.4)"表示作品的质量非常重要。以下是一些示例:

1. (8k, RAW photo, best quality, masterpiece:1.2),(realistic, photo-realistic:1.37), ultra-detailed, 1girl, cute, solo, beautiful detailed sky, detailed cafe, night, sitting, dating, (nose blush), (smile:1.1),(closed mouth), medium breasts, beautiful detailed eyes, (collared shirt:1.1), bowtie, pleated skirt, (short hair:1.2), floating hair, ((masterpiece)), ((best quality))

2. (masterpiece, finely detailed beautiful eyes: 1.2), ultra-detailed, illustration, 1 girl, blue hair black hair, japanese clothes, cherry blossoms, tori, street full of cherry blossoms, detailed background, realistic, volumetric light, sunbeam, light rays, sky, cloud,

3. highres, highest quallity, illustration, cinematic light, ultra detailed, detailed face, (detailed eyes, best quality, hyper detailed, masterpiece, (detailed face), blue hairlwhite hair, purple eyes, highest details, luminous eyes, medium breats, black halo, white clothes, backlighting, (midriff:1.4), light rays, (high contrast), (colorful)

仿照之前的提示,写一段描写如下要素的提示:开心 女孩

A:

(高质量,高分辨率,杰作:1.2),(真实感, photo-realistic:1.37),(超详细,女孩 开心,时尚元素,细节丰富,) ( collared shirt:1.1),  (卷发:1.2), (运动装:1.3), (唱:1.1), (跳舞:1.2), (高对比度,色彩丰富), ((杰作))

3. 安装diffusers并验证text_to_image的pipeline是否能跑通:GitHub - huggingface/diffusers: 🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch

4. 组装

ChatGLM

import os
import platform
import signal
from transformers import AutoTokenizer, AutoModel
import readline

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()

os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False


def build_prompt(history):
    prompt = "欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"
    for query, response in history:
        prompt += f"\n\n用户:{query}"
        prompt += f"\n\nChatGLM-6B:{response}"
    return prompt


def signal_handler(signal, frame):
    global stop_stream
    stop_stream = True


def main():
    history = []
    global stop_stream
    print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
    while True:
        query = input("\n用户:")
        if query.strip() == "stop":
            break
        if query.strip() == "clear":
            history = []
            os.system(clear_command)
            print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
            continue
        count = 0
        for response, history in model.stream_chat(tokenizer, query, history=history):
            if stop_stream:
                stop_stream = False
                break
            else:
                count += 1
                if count % 8 == 0:
                    os.system(clear_command)
                    print(build_prompt(history), flush=True)
                    signal.signal(signal.SIGINT, signal_handler)
        os.system(clear_command)
        print(build_prompt(history), flush=True)


if __name__ == "__main__":
    main()

Stable diffusion

from diffusers import DiffusionPipeline

# 导入stable diffusion
generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
generator.to("cuda")

image = generator("ChatGLM_result_xxxx").images[0]
image.save("result_image.jpg")

5. 生成效果对比

仅输入:开心 女孩 

简单尝试:ChatGLM-6B + Stable diffusion管道连接

输入ChatGLM增强后结果

简单尝试:ChatGLM-6B + Stable diffusion管道连接文章来源地址https://www.toymoban.com/news/detail-485950.html

到了这里,关于简单尝试:ChatGLM-6B + Stable diffusion管道连接的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大模型学习笔记(一):部署ChatGLM模型以及stable-diffusion模型

    平台注册链接: https://growthdata.virtaicloud.com/t/SA 注册完成后,点击右上角: 费用中心 ,可查看领取的算力。 https://platform.virtaicloud.com/ ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。 推理速度比上一代提高了很多,虽然本教程有两种启动方式,但教

    2024年03月19日
    浏览(62)
  • 在矩池云使用ChatGLM-6B & ChatGLM2-6B

    ChatGLM-6B 和 ChatGLM2-6B都是基于 General Language Model (GLM) 架构的对话语言模型,是清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同发布的语言模型。模型有 62 亿参数,一经发布便受到了开源社区的欢迎,在中文语义理解和对话生成上有着不凡的表现。 ChatGLM-6B 可以在消费级的显卡

    2024年02月14日
    浏览(51)
  • ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集实战

    介绍 ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用 6G 左右, 优点 :1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步

    2024年02月12日
    浏览(59)
  • CentOS7上部署langchain-chatglm或stable-diffusion可能遇到的Bug的解决方案

    进入你的代码目录下 下载依赖 这里可能有的朋友会有问题会出现某些包下载不了,这里建议直接使用阿里源即可,在确定你的cuda版本之后(使用nvidia-smi确定cuda版本) 命令行执行 卸载掉刚才pip安装的版本!!!!因为此处安装的版本还缺少cuda的支持,确定卸载掉之后 执行 此处X为

    2024年02月16日
    浏览(39)
  • 【Linux】【chatGLM-6B】如何从huggingface上下载chatGLM-6B模型于centos系统

    从 https://github.com/git-lfs/git-lfs/releases 这个网址上选择以下框框中的内容进行下载 tar -zxvf git-lfs-linux-amd64-v2.12.1.tar.gz sudo ./install.sh 输入如下代码开始下载: git lfs clone https://huggingface.co/chatglm-6b 直接git clone下载的文件都特别小,不像是完整版的

    2024年02月12日
    浏览(71)
  • ChatGLM-6B+LangChain实战

    目标:原始使用ChatGLM-6B可接受的文字长度有限,打算结合LangChain实现长文本生成摘要. 方法: step1:自定义一个GLM继承LangChain中的langchain.llms.base.LLM,load自己的模型. step2:使用LangChain的mapreduce的方法,对文本分块,做摘要,输出结果. 使用的机器资源:T4显卡(16G显存) 附参

    2024年02月16日
    浏览(33)
  • 阿里云安装ChatGLM-6B

    阿里云机器学习PAI方式,不用配置环境。直接安装ChatGLM-6B。可跳过1 1.1环境要求 服务器最好是境外服务器,不然 Github 资源下载不稳定。 软件 版本 Python 3.9.15 pytorch 1.12.1-gpu-cu113 cuda 11.3.0 ubuntu 20.04 1.2 安装CUDA11.3.0 参考连接 1.3 安装python3.9 Python参考连接 OpenSSL参考连接 1.4 安装

    2024年02月13日
    浏览(41)
  • ChatGLM2-6B

    ChatGLM2-6B 项目基本情况 GitHub:https://github.com/THUDM/ChatGLM2-6B/tree/main 参考:https://mp.weixin.qq.com/s/11jCCeOpg1YbABIRLlnyvg 主要贡献 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预

    2024年02月15日
    浏览(45)
  • ChatGLM2-6B 部署

    这是ChatGLM2-6B 部署的阅读笔记,主要介绍了ChatGLM2-6B模型的部署和一些原理的简单解释。 它是单卡开源的对话模型。 充分的中英双语预训练 较低的部署门槛 FP16半精度下,需要至少13G的显存进行推理,甚至可以进一步降低到10G(INT8)和6G(INT4) 更长的序列长度 ChatGLM-6B 序列长度达

    2024年02月09日
    浏览(54)
  • ChatGLM-6B阿里云部署

    重点关注指标:CPU、内存、GPU、GPU驱动  类型 OS CPU 内存 GPU 机器配置 ubuntu_20_04_x64 16核 125G NVIDIA A100 80G   git git-lfs(大文件管理) python 3.10.7(如果已经安装了python其他版本,不用再安装此版本) 下载解压源码 此时终端内输入: python -V 出现 Python 3.10.7表示python安装成功。 下载模型

    2024年02月11日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包