fastdeploy快速部署yolov5离线模型

这篇具有很好参考价值的文章主要介绍了fastdeploy快速部署yolov5离线模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本篇主要是介绍了yolov5模型的快速部署,使用过yolov5训练过的兄弟都知道,训练完之后,无论你的模型是如何导出的,最后想要使用导出的模型,可能还脱离不了yolov5框架,因为,在使用导出的模型前,yolov5对输入层和输出层都做了较多的图像处理,导致,最后要么是调用yolov5中的detect.py,要么是自己手抠输入层和输出层的算法,这里,我顺便讲解一下后者

1、调用框架算法部署离线模型

先声明一下,这里的算法并不是我本人抠出来的,是我的一个

好兄弟同事(王阔)

抠出来的,下面是由他认真细致的研究代码,最后总结出来的

import os
import time
from io import BytesIO
import torch
import torchvision
import re
import numpy as np
import cv2
from PIL import Image


def padded_resize(im, new_shape=(640, 640), stride=32):
    shape = im.shape[:2]

    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
    # dw, dh = np.mod(dw, stride), np.mod(dh, stride)
    dw /= 2
    dh /= 2
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # add border
    # Convert
    im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
    im = np.ascontiguousarray(im)
    im = torch.from_numpy(im)
    im = im.float()
    im /= 255
    im = im[None]
    im = im.cpu().numpy()  # torch to numpy
    return im


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def box_iou(box1, box2):
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), max_det=300):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    min_wh, max_wh = 2, 7680  # (pixels) minimum and maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def is_ascii(s=''):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode('ascii', 'ignore')) == len(s)


def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    # Add one xyxy box to image with label
    if self.pil or not is_ascii(label):
        self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            w, h = self.font.getsize(label)  # text width, height
            outside = box[1] - h >= 0  # label fits outside box
            self.draw.rectangle((box[0],
                                 box[1] - h if outside else box[1],
                                 box[0] + w + 1,
                                 box[1] + 1 if outside else box[1] + h + 1), fill=color)
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
        cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            tf = max(self.lw - 1, 1)  # font thickness
            w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
            outside = p1[1] - h - 3 >= 0  # label fits outside box
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color,
                        thickness=tf, lineType=cv2.LINE_AA)


cls_labels = eval(open("./models/font_lib.txt", "r", encoding="utf8").read())


def return_coordinates(xyxy, conf, cls):
    conf = float(conf.numpy())
    gain = 1.02
    pad = 10
    xyxy = torch.tensor(xyxy).view(-1, 4)
    b = xyxy2xywh(xyxy)  # boxes
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = xywh2xyxy(b).long()
    c1, c2 = (int(xyxy[0, 0]) + 6, int(xyxy[0, 1]) + 6), (int(xyxy[0, 2]) - 6, int(xyxy[0, 3]) - 6)
    # print(f"leftTop:{c1},rightBottom:{c2},Confidence:{conf*100}%")
    cls = cls_labels[int(cls.numpy())]
    result_dict = {"leftTop": c1, "rightBottom": c2, "Confidence": conf, "Cls": cls}

    return result_dict


def clip_coords(boxes, shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords



这里的代码大多都是框架里有的,兄弟们仔细找找就能发现,上面的代码包含输入层的尺寸调整,输出层的先验框判断、坐标类别输出等等,那么将以上代码加载保存后,按如下的代码调用就能实现脱离整个yolov5框架,这里我以导出onnx模型距离

导出onnx模型

导出模型,可以参考yolov5,github官方导出链接:https://github.com/ultralytics/yolov5/issues/251
fastdeploy快速部署yolov5离线模型

python export.py --weights yolov5s.pt --include torchscript onnx
调用onnx模型

调用模型就很简单了,这里因为导出的是onnx模型,所以加载模型自然也要用到onnxruntime这个库,至于这个库的一些概念,兄弟们可以自行搜索,这里在读取到onnx模型后,将预测结果通过非极大值抑制处理后,就能够直接获取到返回的坐标了,如果有什么报错的话,直接私信博主也可以

import onnxruntime as ort

slider_model = ort.InferenceSession("slider.onnx", providers=['CPUExecutionProvider',])
pred = self.slider_model.run([self.slider_model.get_outputs()[0].name],
                          {self.slider_model.get_inputs()[0].name: im})[0]
pred = torch.tensor(pred)
pred = non_max_suppression(pred, conf_thres=0.60, iou_thres=0.60, max_det=1000)
coordinate_list = []
for i, det in enumerate(pred):
    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], img.shape).round()
    for *xyxy, conf, cls in reversed(det):
        # 返回坐标和置信度
        coordinates = return_coordinates(xyxy, conf, cls)
        coordinate_list.append(coordinates)

2、使用fastdeploy快速部署

之前讲述了手抠yolov5中输入层输出层的算法来调用yolov5的模型,上面的代码看似不多,但其实在手抠的过程中非常耗费时间和精力,即使在抠出来后,调用也是一件比较麻烦的事,这里我就讲述另一种方法,使用fastdeploy三行代码就能部署yolov5模型

fast是由百度飞浆paddle发布的一个工具,官方链接https://github.com/PaddlePaddle/FastDeploy,采用fastdeploy部署模型有以下好处

  • 低门槛:一行命令下载SDK,一行命令即可体验部署Demo;不同硬件平台一致的代码体验,降低基于业务模型和业务逻辑二次开发难度;经过官方验证,算法模型精度和推理鲁棒性有保证。
  • 多场景:支持云、边、端(包括移动端)丰富软硬件环境部署,支持图像、视频流、一键服务化等部署方式,满足不同场景的AI部署诉求。
  • 多算法:支持图像分类、目标检测、图像分割、人脸检测、人体关键点检测、文本识别等30多个主流算法模型选型。

fastdeploy安装依赖

  • CUDA >= 11.2 、cuDNN >= 8.0 、 Python >= 3.6
  • OS: Linux x86_64/macOS/Windows 10
gpu或者cpu安装
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda安装
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
仅cpu安装
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

那么话不多说,在安装完之后,还是以上面导出的onnx模型举例,这边我们加载一张图片,然后直接使用fastdeploy将预测出来的框画出来

import cv2
import matplotlib.pyplot as plt
import os
import numpy as np


im = cv2.imread("test.png")
show_img = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
plt.imshow(show_img)
plt.pause(0.001)

fastdeploy快速部署yolov5离线模型
导入fastdeploy加载模型并返回预测结果和画框

import fastdeploy as fd
model = fd.vision.detection.YOLOv5("runs/train/textclick_jiangxi3/weights/best.onnx")

result = model.predict(im)
for box in result.boxes:
    print(box)
    show_img = cv2.rectangle(show_img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2)
    
plt.imshow(show_img)
plt.pause(0.001)

fastdeploy快速部署yolov5离线模型
fastdeploy快速部署yolov5离线模型文章来源地址https://www.toymoban.com/news/detail-486148.html

可以看到,使用fastdeploy非常的方便,不需要在里面添加任何的算法,仅仅几行代码就能将最后的预测结果和分类展示出来

到了这里,关于fastdeploy快速部署yolov5离线模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【TensorRT】TensorRT 部署Yolov5模型(C++)

      该项目代码在本人GitHub代码仓库开源,本人GitHub主页为:GitHub   项目代码:   NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK,可为深度学习推理应用提供低延迟和高吞吐量。详细安装方式参考以下博客: NVIDIA TensorRT 安装 (Windows C++)   经典的一个TensorRT部署模型步骤为

    2023年04月26日
    浏览(48)
  • flask后端进行yolov5检测模型的部署(填坑)

    麻痹的搞了我一整天,蛋疼 本来想把检测模型或者rtsp实时流部署到后端。网上有人推荐一个github项目 https://github.com/muhk01/Yolov5-on-Flask 后来有人把这个项目给修改了,运行起来了,我也准备运行一下 https://github.com/xugaoxiang/yolov5-flask   先把代码拉下来直接配置: 先说说修改的

    2023年04月09日
    浏览(61)
  • C++模型部署:qt+yolov5/6+onnxruntime+opencv

    作者平时主要是写 c++ 库的,界面方面了解不多,也没有发现“美”的眼镜,界面有点丑,大家多包涵。 本次介绍的项目主要是通过 cmake 构建一个 基于 c++ 语言的,以 qt 为框架的,包含 opencv 第三方库在内的,跨平台的,使用 ONNX RUNTIME 进行前向推理的 yolov5/6 演示平台。文章

    2024年02月05日
    浏览(46)
  • Opencv C++实现yolov5部署onnx模型完成目标检测

    头文件 命名空间 结构体 Net_config 里面存了三个阈值和模型地址,其中 置信度 ,顾名思义,看检测出来的物体的精准度。以测量值为中心,在一定范围内,真值出现在该范围内的几率。 endsWith()函数 判断sub是不是s的子串 anchors_640图像接收数组 根据图像大小,选择相应长度的

    2024年02月13日
    浏览(39)
  • 2022.09.29更新 c++下面部署yolov5实例分割模型(六)

    2023.01.11 更新: 新增加onnxruntime的1.13.x版本支持。 由于onnxruntime从1.12升级到1.13之后,GetOutputName()这个API变成了GetOutputNameAllocated(),坑就出现在这里,新版api的返回值是一个unique_ptr指针,这就意味着他使用一次时候就失效了,所以在循环跑模型的时候基本的第二次都报错

    2024年02月12日
    浏览(35)
  • YOLOV5(二):将pt转为onnx模型并用opencv部署

    yolov5s 6.0自带export.py程序可将.pt转为.onnx等,只需配置需要的环境即可。 1. 安装环境 报错:NVIDIA-tensorrt安装失败! 解决:从源码安装TensorRt: ①安装CUDNN和CudaToolKit等GPU配置 ②从官网下载需要的rt版本:https://developer.nvidia.com/nvidia-tensorrt-8x-download ③解压后,将lib文件夹添加到

    2024年02月10日
    浏览(39)
  • c++windows+yolov5-6.2+openvino模型部署超详细

    自我记录:代码是根据自己的项目需求,进行了修改,主要是需要检测的图片非常大,目标小,所以对图片进行了分割再检测。下载完配置好环境之后可以直接跑。 我的环境是:windows+vs2019+openvino2022.2+opencv4.5.5+cmake3.14.0 步骤: 1、下载openvino,我用的版本是2022.2 官网网址:

    2024年02月11日
    浏览(38)
  • 模型实战(11)之win10下Opencv+CUDA部署yolov5、yolov8算法

    测试环境:AMDRH7000+RTX3050+win10+vs2-10+opencv455+cuda11.7 关于opencv470+contrib+cuda的编译,可以详见:Win10下Opencv+CUDA联合编译详细教程 本文代码同时支持 yolov5 、 yolov8 两个模型,详细过程将在文中给出, 完整代码仓库最后给出 其中,yolov8在opencv-DNN + CUDA下的效果如下: 新建VS项目,名

    2024年02月16日
    浏览(40)
  • 【TensorRT】基于C#调用TensorRT 部署Yolov5模型 - 上篇:构建TensorRTSharp

      NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK,可为深度学习推理应用提供低延迟和高吞吐量。详细安装方式参考以下博客: NVIDIA TensorRT 安装 (Windows C++)   前文中已经介绍了在C++中利用TensorRT 部署Yolov5模型,但在实际应用中,经常会出现在C#中部署模型的需求,目前T

    2023年04月24日
    浏览(50)
  • 使用c++onnxruntime部署yolov5模型并使用CUDA加速(超详细)

    前言 1.Yolo简介 2.onnxruntime简介 3.Yolov5模型训练及转换 4.利用cmake向C++部署该onnx模型 总结 接到一个项目,需要用c++和单片机通信,还要使用yolo模型来做到目标检测的任务,但目前网上的各种博客并没有完整的流程教程,让我在部署过程费了不少劲,也踩了不少坑(甚至一度把

    2024年02月02日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包