DINO代码学习笔记(二)

这篇具有很好参考价值的文章主要介绍了DINO代码学习笔记(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

DINO代码学习笔记(二)

        在DINO代码学习笔记(一)中已经将输入transformer之前的参数处理给捋了一遍,接下就是将这些参数传给transformer。

        DINO的transformer使用了Deformable-DETR中的可变性transformer(他们之前的工作也有用到)

        这里还是使用之前的一些设置,为了连贯,这里提前声明:

1、输入尺寸[2,3,640,701],

2、src为[[N,256,80,88],[N,256,40,44],[N,256,20,22],[N,256,10,11]],其中N=2,

3、poss为[[N,256,80,88],[N,256,40,44],[N,256,20,22],[N,256,10,11]]

4、mask为[[N,80,88],[N,40,44],[N,20,22],[N,10,11]] 

5、input_query_bbox [N,single_pad * 2 * dn_number,256](该batch中[N,200,256]);

6、input_query_label [N,200,4];

7、attn_mask [single_pad * 2 * dn_number + 900,single_pad * 2 * dn_number + 900](该batch中[1100,1100])

这里先把主函数的代码贴上来

class DeformableTransformer(nn.Module):

    def __init__(self, d_model=256, nhead=8, 
                 num_queries=300, 
                 num_encoder_layers=6,
                 num_unicoder_layers=0,
                 num_decoder_layers=6, 
                 dim_feedforward=2048, dropout=0.0,
                 activation="relu", normalize_before=False,
                 return_intermediate_dec=False, query_dim=4,
                 num_patterns=0,
                 modulate_hw_attn=False,
                 # for deformable encoder
                 deformable_encoder=False,
                 deformable_decoder=False,
                 num_feature_levels=1,
                 enc_n_points=4,
                 dec_n_points=4,
                 use_deformable_box_attn=False,
                 box_attn_type='roi_align',
                 # init query
                 learnable_tgt_init=False,
                 decoder_query_perturber=None,
                 add_channel_attention=False,
                 add_pos_value=False,
                 random_refpoints_xy=False,
                 # two stage
                 two_stage_type='no', # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
                 two_stage_pat_embed=0,
                 two_stage_add_query_num=0,
                 two_stage_learn_wh=False,
                 two_stage_keep_all_tokens=False,
                 # evo of #anchors
                 dec_layer_number=None,
                 rm_enc_query_scale=True,
                 rm_dec_query_scale=True,
                 rm_self_attn_layers=None,
                 key_aware_type=None,
                 # layer share
                 layer_share_type=None,
                 # for detach
                 rm_detach=None,
                 decoder_sa_type='ca', 
                 module_seq=['sa', 'ca', 'ffn'],
                 # for dn
                 embed_init_tgt=False,

                 use_detached_boxes_dec_out=False,
                 ):
        super().__init__()
        self.num_feature_levels = num_feature_levels
        self.num_encoder_layers = num_encoder_layers
        self.num_unicoder_layers = num_unicoder_layers
        self.num_decoder_layers = num_decoder_layers
        self.deformable_encoder = deformable_encoder
        self.deformable_decoder = deformable_decoder
        self.two_stage_keep_all_tokens = two_stage_keep_all_tokens
        self.num_queries = num_queries
        self.random_refpoints_xy = random_refpoints_xy
        self.use_detached_boxes_dec_out = use_detached_boxes_dec_out
        assert query_dim == 4

        if num_feature_levels > 1:
            assert deformable_encoder, "only support deformable_encoder for num_feature_levels > 1"
        if use_deformable_box_attn:
            assert deformable_encoder or deformable_encoder

        assert layer_share_type in [None, 'encoder', 'decoder', 'both']
        if layer_share_type in ['encoder', 'both']:
            enc_layer_share = True
        else:
            enc_layer_share = False
        if layer_share_type in ['decoder', 'both']:
            dec_layer_share = True
        else:
            dec_layer_share = False
        assert layer_share_type is None

        self.decoder_sa_type = decoder_sa_type
        assert decoder_sa_type in ['sa', 'ca_label', 'ca_content']

        # choose encoder layer type
        if deformable_encoder:
            encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, enc_n_points, add_channel_attention=add_channel_attention, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type)
        else:
            raise NotImplementedError
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(
            encoder_layer, num_encoder_layers, 
            encoder_norm, d_model=d_model, 
            num_queries=num_queries,
            deformable_encoder=deformable_encoder, 
            enc_layer_share=enc_layer_share, 
            two_stage_type=two_stage_type
        )

        # choose decoder layer type
        if deformable_decoder:
            decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, dec_n_points, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type,
                                                          key_aware_type=key_aware_type,
                                                          decoder_sa_type=decoder_sa_type,
                                                          module_seq=module_seq)

        else:
            raise NotImplementedError

        decoder_norm = nn.LayerNorm(d_model)
        self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
                                        return_intermediate=return_intermediate_dec,
                                        d_model=d_model, query_dim=query_dim, 
                                        modulate_hw_attn=modulate_hw_attn,
                                        num_feature_levels=num_feature_levels,
                                        deformable_decoder=deformable_decoder,
                                        decoder_query_perturber=decoder_query_perturber, 
                                        dec_layer_number=dec_layer_number, rm_dec_query_scale=rm_dec_query_scale,
                                        dec_layer_share=dec_layer_share,
                                        use_detached_boxes_dec_out=use_detached_boxes_dec_out
                                        )

        self.d_model = d_model
        self.nhead = nhead
        self.dec_layers = num_decoder_layers
        self.num_queries = num_queries  # useful for single stage model only
        self.num_patterns = num_patterns
        if not isinstance(num_patterns, int):
            Warning("num_patterns should be int but {}".format(type(num_patterns)))
            self.num_patterns = 0

        if num_feature_levels > 1:
            if self.num_encoder_layers > 0:
                self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
            else:
                self.level_embed = None
        
        self.learnable_tgt_init = learnable_tgt_init
        assert learnable_tgt_init, "why not learnable_tgt_init"
        self.embed_init_tgt = embed_init_tgt
        if (two_stage_type != 'no' and embed_init_tgt) or (two_stage_type == 'no'):
            self.tgt_embed = nn.Embedding(self.num_queries, d_model)
            nn.init.normal_(self.tgt_embed.weight.data)
        else:
            self.tgt_embed = None
            
        # for two stage
        self.two_stage_type = two_stage_type
        self.two_stage_pat_embed = two_stage_pat_embed
        self.two_stage_add_query_num = two_stage_add_query_num
        self.two_stage_learn_wh = two_stage_learn_wh
        assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type)
        if two_stage_type =='standard':
            # anchor selection at the output of encoder
            self.enc_output = nn.Linear(d_model, d_model)
            self.enc_output_norm = nn.LayerNorm(d_model)      
            
            if two_stage_pat_embed > 0:
                self.pat_embed_for_2stage = nn.Parameter(torch.Tensor(two_stage_pat_embed, d_model))
                nn.init.normal_(self.pat_embed_for_2stage)

            if two_stage_add_query_num > 0:
                self.tgt_embed = nn.Embedding(self.two_stage_add_query_num, d_model)

            if two_stage_learn_wh:

                self.two_stage_wh_embedding = nn.Embedding(1, 2)
            else:
                self.two_stage_wh_embedding = None

        if two_stage_type == 'no':
            self.init_ref_points(num_queries) # init self.refpoint_embed

        self.enc_out_class_embed = None
        self.enc_out_bbox_embed = None

        # evolution of anchors
        self.dec_layer_number = dec_layer_number
        if dec_layer_number is not None:
            if self.two_stage_type != 'no' or num_patterns == 0:
                assert dec_layer_number[0] == num_queries, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries})"
            else:
                assert dec_layer_number[0] == num_queries * num_patterns, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries}) * num_patterns({num_patterns})"

        self._reset_parameters()

        self.rm_self_attn_layers = rm_self_attn_layers
        if rm_self_attn_layers is not None:
            print("Removing the self-attn in {} decoder layers".format(rm_self_attn_layers))
            for lid, dec_layer in enumerate(self.decoder.layers):
                if lid in rm_self_attn_layers:
                    dec_layer.rm_self_attn_modules()

        self.rm_detach = rm_detach
        if self.rm_detach:
            assert isinstance(rm_detach, list)
            assert any([i in ['enc_ref', 'enc_tgt', 'dec'] for i in rm_detach])
        self.decoder.rm_detach = rm_detach

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformAttn):
                m._reset_parameters()
        if self.num_feature_levels > 1 and self.level_embed is not None:
            nn.init.normal_(self.level_embed)

        if self.two_stage_learn_wh:
            nn.init.constant_(self.two_stage_wh_embedding.weight, math.log(0.05 / (1 - 0.05)))

    def get_valid_ratio(self, mask):
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)  # 取feature map中非padding部分的H (即feature map的实际大小)
        valid_W = torch.sum(~mask[:, 0, :], 1)  # 取feature map中非padding部分的W
        valid_ratio_h = valid_H.float() / H  # 计算feature map中非padding部分的H在当前batch下feature map中的H所占的比例
        valid_ratio_w = valid_W.float() / W  # 计算feature map中非padding部分的W在当前batch下feature map中的W所占的比例
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def init_ref_points(self, use_num_queries):
        self.refpoint_embed = nn.Embedding(use_num_queries, 4)
        
        if self.random_refpoints_xy:

            self.refpoint_embed.weight.data[:, :2].uniform_(0,1)
            self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2])
            self.refpoint_embed.weight.data[:, :2].requires_grad = False

    def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None):
        """
        Input:
            - srcs: List of multi features [bs, ci, hi, wi]
            - masks: List of multi masks [bs, hi, wi]
            - refpoint_embed: [bs, num_dn, 4]. None in infer  # 即input_query_bbox
            - pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
            - tgt: [bs, num_dn, d_model]. None in infer  # 即input_query_label
            
        """
        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)

            src = src.flatten(2).transpose(1, 2)                # bs, hw, c  # 将H和W打平 [N,256,H,W] -> [N,H*W,256]
            mask = mask.flatten(1)                              # bs, hw  # [N,H,W] -> [N,H*W]
            pos_embed = pos_embed.flatten(2).transpose(1, 2)    # bs, hw, c  # 同样将H和W打平 [N,256,H,W] -> [N,H*W,256]
            if self.num_feature_levels > 1 and self.level_embed is not None: # self.level_embed是一个[4,256]的tensor
                lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # 加上层数的embed
            else:
                lvl_pos_embed = pos_embed
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)    # bs, \sum{hxw}, c  # 将打平后的tensor cat在一起,该batch中[N,9350,256]
        mask_flatten = torch.cat(mask_flatten, 1)   # bs, \sum{hxw}  该batch中[N,9350]
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c 该batch中[N,9350,256]
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) # 存放着每一层feature map的[H,W],维度为[4,2]
        level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) # cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维 如level_start_index = tensor([   0, 7040, 8800, 9240], device='cuda:0')
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)  # 输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分有效长宽与该层feature map长宽的比值

        # two stage
        enc_topk_proposals = enc_refpoint_embed = None

        #########################################################
        # Begin Encoder
        #########################################################
        memory, enc_intermediate_output, enc_intermediate_refpoints = self.encoder(
                src_flatten, 
                pos=lvl_pos_embed_flatten, 
                level_start_index=level_start_index, 
                spatial_shapes=spatial_shapes,
                valid_ratios=valid_ratios,
                key_padding_mask=mask_flatten,
                ref_token_index=enc_topk_proposals, # bs, nq 
                ref_token_coord=enc_refpoint_embed, # bs, nq, 4
                )  # memory [N,9350,256];enc_intermediate_output=Nonw;enc_intermediate_refpoints=None
        #########################################################
        # End Encoder
        # - memory: bs, \sum{hw}, c
        # - mask_flatten: bs, \sum{hw}
        # - lvl_pos_embed_flatten: bs, \sum{hw}, c
        # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
        # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
        #########################################################

        if self.two_stage_type =='standard':
            if self.two_stage_learn_wh:
                input_hw = self.two_stage_wh_embedding.weight[0]
            else:
                input_hw = None
            output_memory, output_proposals = gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes, input_hw)
            output_memory = self.enc_output_norm(self.enc_output(output_memory))  # Linear(256,256) + Layer Norm
            if self.two_stage_pat_embed > 0:
                bs, nhw, _ = output_memory.shape
                # output_memory: bs, n, 256; self.pat_embed_for_2stage: k, 256
                output_memory = output_memory.repeat(1, self.two_stage_pat_embed, 1)
                _pats = self.pat_embed_for_2stage.repeat_interleave(nhw, 0) 
                output_memory = output_memory + _pats
                output_proposals = output_proposals.repeat(1, self.two_stage_pat_embed, 1)

            if self.two_stage_add_query_num > 0:
                assert refpoint_embed is not None
                output_memory = torch.cat((output_memory, tgt), dim=1)
                output_proposals = torch.cat((output_proposals, refpoint_embed), dim=1)

            enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)  # Linear(256,91) [N,9350,91]
            enc_outputs_coord_unselected = self.enc_out_bbox_embed(output_memory) + output_proposals  # (bs, \sum{hw}, 4) unsigmoid [N,9350,4]
            topk = self.num_queries  # 900
            topk_proposals = torch.topk(enc_outputs_class_unselected.max(-1)[0], topk, dim=1)[1]  # bs, nq  top900索引[N,900]

            # gather boxes
            refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid  横向根据topk_proposals取值 [N,900,4]
            refpoint_embed_ = refpoint_embed_undetach.detach()  # refpoint_embed_ [N,900,4]
            init_box_proposal = torch.gather(output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)).sigmoid() # sigmoid init_box_proposal [N,900,4]

            # gather tgt
            tgt_undetach = torch.gather(output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model))
            if self.embed_init_tgt:
                tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model [N,900,256]
            else:
                tgt_ = tgt_undetach.detach()

            if refpoint_embed is not None:
                refpoint_embed=torch.cat([refpoint_embed,refpoint_embed_],dim=1)  # [N,1100,4]
                tgt=torch.cat([tgt,tgt_],dim=1)  # [N,1100,256]
            else:
                refpoint_embed,tgt=refpoint_embed_,tgt_

        elif self.two_stage_type == 'no':
            tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model
            refpoint_embed_ = self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, 4

            if refpoint_embed is not None:
                refpoint_embed=torch.cat([refpoint_embed,refpoint_embed_],dim=1)
                tgt=torch.cat([tgt,tgt_],dim=1)
            else:
                refpoint_embed,tgt=refpoint_embed_,tgt_

            if self.num_patterns > 0:
                tgt_embed = tgt.repeat(1, self.num_patterns, 1)
                refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
                tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(self.num_queries, 1) # 1, n_q*n_pat, d_model
                tgt = tgt_embed + tgt_pat

            init_box_proposal = refpoint_embed_.sigmoid()

        else:
            raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
        #########################################################
        # End preparing tgt
        # - tgt: bs, NQ, d_model
        # - refpoint_embed(unsigmoid): bs, NQ, d_model 
        ######################################################### 

        #########################################################
        # Begin Decoder
        #########################################################
        hs, references = self.decoder(
                tgt=tgt.transpose(0, 1),  # [1100,N,256]
                memory=memory.transpose(0, 1), # [9350,N,256]
                memory_key_padding_mask=mask_flatten, # [N,9350]
                pos=lvl_pos_embed_flatten.transpose(0, 1), # [9350,N,256]
                refpoints_unsigmoid=refpoint_embed.transpose(0, 1), # [1100,N,4]
                level_start_index=level_start_index,  # [4]
                spatial_shapes=spatial_shapes, # [4,2]
                valid_ratios=valid_ratios,tgt_mask=attn_mask)  # valid_ratios [2,4,2],attn_mask [1100,1100]
        #########################################################
        # End Decoder
        # hs: n_dec, bs, nq, d_model [N,1100,256] * 6
        # references: n_dec+1, bs, nq, query_dim [N,1100,4] * 7
        #########################################################

        #########################################################
        # Begin postprocess
        #########################################################     
        if self.two_stage_type == 'standard':
            if self.two_stage_keep_all_tokens:
                hs_enc = output_memory.unsqueeze(0)
                ref_enc = enc_outputs_coord_unselected.unsqueeze(0)
                init_box_proposal = output_proposals

            else:
                hs_enc = tgt_undetach.unsqueeze(0) # [1,N,900,256]
                ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0) # [1,N,900,4]
        else:
            hs_enc = ref_enc = None
        #########################################################
        # End postprocess
        # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
        # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
        #########################################################        

        return hs, references, hs_enc, ref_enc, init_box_proposal
        # hs: (n_dec, bs, nq, d_model)
        # references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
        # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
        # ref_enc: sigmoid coordinates. \
        #           (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None

从主函数可以看到,在输入encoder之前还需要对参数做一些预处理

# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
    bs, c, h, w = src.shape
    spatial_shape = (h, w)
    spatial_shapes.append(spatial_shape)

    src = src.flatten(2).transpose(1, 2)                # bs, hw, c  # 将H和W打平 [N,256,H,W] -> [N,H*W,256]
    mask = mask.flatten(1)                              # bs, hw  # [N,H,W] -> [N,H*W]
    pos_embed = pos_embed.flatten(2).transpose(1, 2)    # bs, hw, c  # 同样将H和W打平 [N,256,H,W] -> [N,H*W,256]
    if self.num_feature_levels > 1 and self.level_embed is not None: # self.level_embed是一个[4,256]的tensor
        lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # 加上层数的embed
    else:
        lvl_pos_embed = pos_embed
    lvl_pos_embed_flatten.append(lvl_pos_embed)
    src_flatten.append(src)
    mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1)    # bs, \sum{hxw}, c  # 将打平后的tensor cat在一起,该batch中[N,9350,256]
mask_flatten = torch.cat(mask_flatten, 1)   # bs, \sum{hxw}  该batch中[N,9350]
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c 该batch中[N,9350,256]
# 存放着每一层feature map的[H,W],维度为[4,2]
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) 
# cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维 如level_start_index = tensor([ 0, 7040, 8800, 9240], device='cuda:0')
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) 
# 输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分有效长宽与该层feature map长宽的比值
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)  

1、把四层feature map整合成query,假设C2的尺寸为[H,W],那么它的维度为len_q = H*W + H//2*W//2 + H//4*W//4 + H//8*W//8,最终的维度为[N,len_q,256],其中N为batch size,过程中还会加入层数embed,这里为[N,9350,256],对应的位置编码的维度也是一样的

2、mask的维度对齐query,为[N,len_q]([N,9350])

3、spatial_shapes记录了四层feature map的尺寸[4,2]([[80, 88],[40, 44],[20, 22],[10, 11]])

4、level_start_index记录cat在一起后feature map的起始索引,如:第一层是0,第二层是H1*W1+0,第三层是H2*W2+H1*W1+0,最后一层H3*W3+H2*W2+H1*W1+0 共4维

5、valid_ratios输出一个[N,4,2]的tensor,表示每一层的feature map中对应的非padding部分(实际有效feature map)的有效长宽与该层feature map长宽的比值

一、encoder 

#########################################################
# Begin Encoder
#########################################################
memory, enc_intermediate_output, enc_intermediate_refpoints = self.encoder(
        src_flatten, 
        pos=lvl_pos_embed_flatten, 
        level_start_index=level_start_index, 
        spatial_shapes=spatial_shapes,
        valid_ratios=valid_ratios,
        key_padding_mask=mask_flatten,
        ref_token_index=enc_topk_proposals, # bs, nq 
        ref_token_coord=enc_refpoint_embed, # bs, nq, 4
        )  # memory [N,9350,256];enc_intermediate_output=Nonw;enc_intermediate_refpoints=None
#########################################################
# End Encoder
# - memory: bs, \sum{hw}, c
# - mask_flatten: bs, \sum{hw}
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
#########################################################
class TransformerEncoder(nn.Module):

    def __init__(self, 
        encoder_layer, num_layers, norm=None, d_model=256, 
        num_queries=300,
        deformable_encoder=False, 
        enc_layer_share=False, enc_layer_dropout_prob=None,                  
        two_stage_type='no',  # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
    ):
        super().__init__()
        # prepare layers
        if num_layers > 0:
            self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
        else:
            self.layers = []
            del encoder_layer

        self.query_scale = None
        self.num_queries = num_queries
        self.deformable_encoder = deformable_encoder
        self.num_layers = num_layers
        self.norm = norm
        self.d_model = d_model

        self.enc_layer_dropout_prob = enc_layer_dropout_prob
        if enc_layer_dropout_prob is not None:
            assert isinstance(enc_layer_dropout_prob, list)
            assert len(enc_layer_dropout_prob) == num_layers
            for i in enc_layer_dropout_prob:
                assert 0.0 <= i <= 1.0

        self.two_stage_type = two_stage_type
        if two_stage_type in ['enceachlayer', 'enclayer1']:
            _proj_layer = nn.Linear(d_model, d_model)
            _norm_layer = nn.LayerNorm(d_model)
            if two_stage_type == 'enclayer1':
                self.enc_norm = nn.ModuleList([_norm_layer])
                self.enc_proj = nn.ModuleList([_proj_layer])
            else:
                self.enc_norm = nn.ModuleList([copy.deepcopy(_norm_layer) for i in range(num_layers - 1) ])
                self.enc_proj = nn.ModuleList([copy.deepcopy(_proj_layer) for i in range(num_layers - 1) ]) 

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        reference_points_list = []
        for lvl, (H_, W_) in enumerate(spatial_shapes): # 遍历feature map,第0层是尺寸最大的feature map H_=80,W_=88
            # 根据feature map的尺寸生成网格,生成每个像素点的中心点归一化后的x,y坐标
            ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
                                          torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
            ref = torch.stack((ref_x, ref_y), -1)  # [N,7040,2]
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)  # 再将所有的归一化后的中心点坐标cat在一起 [N,9350,2]
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]  # 归一化的x,y坐标乘实际feature map有效区域的比值,得到每个中心点在实际feature map上归一化的坐标 [N,9350,4,2]
        return reference_points

    def forward(self, 
            src: Tensor, 
            pos: Tensor, 
            spatial_shapes: Tensor, 
            level_start_index: Tensor, 
            valid_ratios: Tensor, 
            key_padding_mask: Tensor,
            ref_token_index: Optional[Tensor]=None,
            ref_token_coord: Optional[Tensor]=None 
            ):
        """
        Input:
            - src: [bs, sum(hi*wi), 256]
            - pos: pos embed for src. [bs, sum(hi*wi), 256]
            - spatial_shapes: h,w of each level [num_level, 2]
            - level_start_index: [num_level] start point of level in sum(hi*wi).
            - valid_ratios: [bs, num_level, 2]
            - key_padding_mask: [bs, sum(hi*wi)]

            - ref_token_index: bs, nq
            - ref_token_coord: bs, nq, 4
        Intermedia:
            - reference_points: [bs, sum(hi*wi), num_level, 2]
        Outpus: 
            - output: [bs, sum(hi*wi), 256]
        """
        if self.two_stage_type in ['no', 'standard', 'enceachlayer', 'enclayer1']:
            assert ref_token_index is None

        output = src
        # preparation and reshape
        if self.num_layers > 0:
            if self.deformable_encoder:
                reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) # [N,9350,4,2]

        intermediate_output = []
        intermediate_ref = []
        if ref_token_index is not None:
            out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model))
            intermediate_output.append(out_i)
            intermediate_ref.append(ref_token_coord)

        # main process
        for layer_id, layer in enumerate(self.layers):
            # main process
            dropflag = False
            if self.enc_layer_dropout_prob is not None:
                prob = random.random()
                if prob < self.enc_layer_dropout_prob[layer_id]:
                    dropflag = True
            
            if not dropflag:
                if self.deformable_encoder:
                    output = layer(src=output, pos=pos, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, key_padding_mask=key_padding_mask)  
                else:
                    output = layer(src=output.transpose(0, 1), pos=pos.transpose(0, 1), key_padding_mask=key_padding_mask).transpose(0, 1)        

            if ((layer_id == 0 and self.two_stage_type in ['enceachlayer', 'enclayer1']) \
                or (self.two_stage_type == 'enceachlayer')) \
                    and (layer_id != self.num_layers - 1):
                output_memory, output_proposals = gen_encoder_output_proposals(output, key_padding_mask, spatial_shapes)
                output_memory = self.enc_norm[layer_id](self.enc_proj[layer_id](output_memory))
                
                # gather boxes
                topk = self.num_queries
                enc_outputs_class = self.class_embed[layer_id](output_memory)
                ref_token_index = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1] # bs, nq
                ref_token_coord = torch.gather(output_proposals, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, 4))

                output = output_memory

            # aux loss
            if (layer_id != self.num_layers - 1) and ref_token_index is not None:
                out_i = torch.gather(output, 1, ref_token_index.unsqueeze(-1).repeat(1, 1, self.d_model))
                intermediate_output.append(out_i)
                intermediate_ref.append(ref_token_coord)

        if self.norm is not None:
            output = self.norm(output)

        if ref_token_index is not None:
            intermediate_output = torch.stack(intermediate_output) # n_enc/n_enc-1, bs, \sum{hw}, d_model
            intermediate_ref = torch.stack(intermediate_ref)
        else:
            intermediate_output = intermediate_ref = None

        return output, intermediate_output, intermediate_ref

        其中reference_points的shape为[N,len_q,4,2]([N,9350,4,2]),得到的是在每一层特征图中的相对位置。

class DeformableTransformerEncoderLayer(nn.Module):
    def __init__(self,
                 d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4,
                 add_channel_attention=False,
                 use_deformable_box_attn=False,
                 box_attn_type='roi_align',
                 ):
        super().__init__()
        # self attention
        if use_deformable_box_attn:
            self.self_attn = MSDeformableBoxAttention(d_model, n_levels, n_heads, n_boxes=n_points, used_func=box_attn_type)
        else:
            self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation, d_model=d_ffn)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # channel attention
        self.add_channel_attention = add_channel_attention
        if add_channel_attention:
            self.activ_channel = _get_activation_fn('dyrelu', d_model=d_model)
            self.norm_channel = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None):
        # self attention
        src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, key_padding_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        # ffn
        src = self.forward_ffn(src)

        # channel attn
        if self.add_channel_attention:
            src = self.norm_channel(src + self.activ_channel(src))

        return src

encoder的图解: 

DINO代码学习笔记(二)

 MSDeformAttn:

class MSDeformAttn(nn.Module):
    def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
        """
        Multi-Scale Deformable Attention Module
        :param d_model      hidden dimension
        :param n_levels     number of feature levels
        :param n_heads      number of attention heads
        :param n_points     number of sampling points per attention head per feature level
        """
        super().__init__()
        if d_model % n_heads != 0:
            raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
        _d_per_head = d_model // n_heads
        # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
        if not _is_power_of_2(_d_per_head):
            warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
                          "which is more efficient in our CUDA implementation.")

        self.im2col_step = 64

        self.d_model = d_model
        self.n_levels = n_levels
        self.n_heads = n_heads
        self.n_points = n_points

        self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
        self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
        self.value_proj = nn.Linear(d_model, d_model)
        self.output_proj = nn.Linear(d_model, d_model)

        self._reset_parameters()

    def _reset_parameters(self):
        constant_(self.sampling_offsets.weight.data, 0.)
        thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
        for i in range(self.n_points):
            grid_init[:, :, i, :] *= i + 1
        with torch.no_grad():
            self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
        constant_(self.attention_weights.weight.data, 0.)
        constant_(self.attention_weights.bias.data, 0.)
        xavier_uniform_(self.value_proj.weight.data)
        constant_(self.value_proj.bias.data, 0.)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.)

    def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
        """
        :param query                       (N, Length_{query}, C)
        :param reference_points            (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
                                        or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
        :param input_flatten               (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
        :param input_spatial_shapes        (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
        :param input_level_start_index     (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
        :param input_padding_mask          (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements

        :return output                     (N, Length_{query}, C)
        """
        N, Len_q, _ = query.shape # Len_q9350/1100
        N, Len_in, _ = input_flatten.shape  # Len_in9350
        assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in

        value = self.value_proj(input_flatten)  # 输入经过一个Linear层,维度由[N,Len_in,256] -> [N,Len_in,256],得到value
        if input_padding_mask is not None:
            value = value.masked_fill(input_padding_mask[..., None], float(0))  # 在value中,mask中对应元素为True的位置都用0填充
        value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)  # value的shape由[N,Len_in,256] -> [N,Len_in,8,32]
        sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)  # 每个query产生对应不同head不同level的偏置,sampling_offsets的shape由[N,Len_q,256] -> [N,Len_q,8,4,4,2]
        attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)  # 每个偏置向量的权重,经过Linear(256,128),attention_weights的shape由[N,Len_q,256] -> [N,Len_q,8,16]
        attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)  # 对属于同一个query的来自与不同level的offset后向量权重在每个head分别归一化,softmax后attention_weights的shape由[N,Len_q,8,16] -> [N,Len_q,8,4,4]
        # N, Len_q, n_heads, n_levels, n_points, 2
        if reference_points.shape[-1] == 2:
            offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)  # offset_normalizer 将input_spatial_shapes中[H,W]的形式转化为[W,H],input_spatial_shapes的shape还是[4,2]
            sampling_locations = reference_points[:, :, None, :, None, :] \
                                 + sampling_offsets / offset_normalizer[None, None, None, :, None, :]  # 采样点的坐标[N,Len_q,8,4,4,2]
        elif reference_points.shape[-1] == 4:
            sampling_locations = reference_points[:, :, None, :, None, :2] \
                                 + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
        else:
            raise ValueError(
                'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))

        # for amp
        if value.dtype == torch.float16:
            # for mixed precision
            output = MSDeformAttnFunction.apply(
            value.to(torch.float32), input_spatial_shapes, input_level_start_index, sampling_locations.to(torch.float32), attention_weights, self.im2col_step)
            output = output.to(torch.float16)
            output = self.output_proj(output)
            return output


        output = MSDeformAttnFunction.apply(
            value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
        output = self.output_proj(output)  # 输出经过一个Linear层,维度由[N,Len_q,256] -> [N,Len_q,256]
        return output

        源码中n_head设置为8,d_model为256,n_levels为4,n_points为4。

        MSDeformAttn函数就是将加了pos_embeds的srcs作为query传入,每一个query在特征图上对应一个reference_point,基于每个reference_point再选取n = 4个keys,根据Linear生成的attention_weights进行特征融合(注意力权重不是Q * k算来的,而是对query直接Linear得到的)。sampling_offsets,attention_weights的具体信息在上面的代码段中有标注,这里就不多说了。

deformable transformer的图解(来自Deformable-DETR):

DINO代码学习笔记(二)

 对应的公式:

DINO代码学习笔记(二)

MSDeformAttnFunction调用的是cuda编程,不过代码里头有一个pytorch的实现:

def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
    # for debug and test only,
    # need to use cuda version instead
    N_, S_, M_, D_ = value.shape  # value shpae [N,len_q,8,32]
    _, Lq_, M_, L_, P_, _ = sampling_locations.shape  # shape [N,len_q,8,4,4,2]
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)  # 区分每个feature map level
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for lid_, (H_, W_) in enumerate(value_spatial_shapes):
        # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
        value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)  # [N,H_*W_,8,32] -> [N*8,32,H_,W_]
        # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
        sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
        # N_*M_, D_, Lq_, P_
        # F.grid_sample这个函数的作用就是给定输入input和网格grid,根据grid中的像素位置从input中取出对应位置的值(可能需要插值)得到输出output。
        sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
                                          mode='bilinear', padding_mode='zeros', align_corners=False)
        sampling_value_list.append(sampling_value_l_)
    # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
    attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)  # shape [N,len_q,8,4,4] -> [N*8,1,len_q,16]
    output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)  # 对应上论文中的公式
    return output.transpose(1, 2).contiguous()

encoder输出:

1、memory[N,9350,256];

2、enc_intermediate_output=None;

3、enc_intermediate_refpoints=None;

到这里先将encoder的部分捋一遍,后续更新decoder和loss部分文章来源地址https://www.toymoban.com/news/detail-486173.html

到了这里,关于DINO代码学习笔记(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 物联网|按键实验---学习I/O的输入及中断的编程|函数说明的格式|如何使用CMSIS的延时|读取通过外部中断实现按键捕获代码的实现及分析-学习笔记(14)

    1 代码的流程分析 2 代码的实现 库函数HAL_Init(void)分析: HAL_Delay()系统延时的步骤: 它的实现步骤如下: 1.用变量获得系统时钟源计数器的值 2.获得要延迟时间的参数值 3.比较两者大小,若时钟计数器的值大于要实现延迟的值,就会困在循环里;反之,跳出循环,延时完成。

    2024年02月14日
    浏览(50)
  • 自监督表征学习方法——DINO方法

    参考文献:《 Emerging Properties in Self-Supervised Vision Transformers 》 DINO全称—— a form of knowledge di stillation with no labels.( 一种没有标签的知识蒸馏的形式 ) 如上图所示:来自没有监督训练的8×8补丁的视觉变压器的自我注意。我们观察最后一层头部的[CLS]令牌的自我关注。此令牌不

    2024年02月13日
    浏览(50)
  • 按键输入实验--GPIO做输入-学习笔记

    按键输入实验 1.首先,按键实验是GPIO口的另一应用,上一次的跑马灯实验是将GPIO口作为输出,此次按键实验是将GPIO口作为输入。 2.GPIO作为输入时和输入的不同: (1)首先,上拉电阻是为了保证在没有信号输入的时候,IO口保持高电平,若按键为低电平有效,则没有信号的

    2024年02月09日
    浏览(43)
  • 【学习笔记】unity脚本学习(四)【inputManager、键盘输入、鼠标输入、Raycast】

    参考:极客学院unity3d教程 inputManager Horizontal虚拟轴的各个属性含义(摘选自ChatGpt,部分回答不准确) Name :虚拟轴的名称,用于在代码中访问该虚拟轴。这个名称应该是唯一的,用于区分其他虚拟轴。 Descriptive Name :描述虚拟轴的名称,用于在Inspector中显示。这个名称通常

    2024年02月15日
    浏览(39)
  • C语言学习笔记:输入&输出

    ✨博文作者:烟雨孤舟 💖 喜欢的可以 点赞 收藏 关注哦~~ ✍️ 作者简介: 一个热爱大数据的学习者 ✍️ 笔记简介:作为大数据爱好者,以下是个人总结的学习笔记,如有错误,请多多指教! 目录 scanf和printf gets和puts getchar和putchar printf是格式化的输出函数,scanf是C语言的输

    2024年02月09日
    浏览(45)
  • C++学习笔记——输入、输出和文件

    目录 一、标准输入输出 2.1下面是它们的基本用法 解释 二、格式化输入输出 2.2下面是一个示例 解释 三、文件读写 3.3下面是一个文件读写的示例 解释 四、异常处理和错误检测 4.1下面是一个示例 解释 五、一个实例代码 5.1如何读取 CSV 文件,并计算每一列的平均值 上一篇文

    2024年02月01日
    浏览(45)
  • LaTex学习笔记(三):矩阵的输入

    矩阵的输入类似于表格 在latex中输入矩阵有多种方式 (1) (2) (3) (4) (5) (6) 分块矩阵 (1) (2)

    2024年02月12日
    浏览(35)
  • 【计算机视觉 | 目标检测 | 图像分割】Grounding DINO + Segment Anything Model (SAM)源代码分享(含源代码)

    在本教程中,我们将学习如何使用两个突破性的模型自动注释图像 - Grounding DINO 和 Segment Anything Model (SAM)。 然后,我们可以使用此数据集来训练实时对象检测或实例分割模型。 以传统方式使用多边形对图像进行注释极其耗时且昂贵。 借助 Grounding DINO 和 SAM,初始注释仅需几分

    2024年04月15日
    浏览(179)
  • 【计算机视觉 | 目标检测】Grounding DINO 深度学习环境的配置(含案例)

    “ Grounding DINO:Marrying DINO with Grounded Pre-Training for Open-Set Object Detection ”的官方 PyTorch 实现: SoTA 开放集对象检测器。 论文地址: 在 YouTube 上观看介绍视频: Try the Colab Demo: Try Official Huggingface Demo: Grounded-SAM: Marrying Grounding DINO with Segment Anything Grounding DINO with Stable Diffusion

    2024年02月07日
    浏览(74)
  • verilog 学习笔记(3)输入查找表(LUT)

    今天做了一个关于输入查找表(LUT)的题目,里面关于8-1 MUX的处理方式让我觉得非常的新奇。 题目很简单,大意就是要求设计一个8位的移位寄存器,同时附加随机访问功能。也就是通过输入的ABC三个数字对应的二进制数转换为一个地址(很像存储中的方式),然后访问移位

    2024年02月13日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包