AI图片生成Stable Diffusion环境搭建与运行

这篇具有很好参考价值的文章主要介绍了AI图片生成Stable Diffusion环境搭建与运行。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        Stable Diffusion是一种基于扩散过程的生成模型,由Ge et al.在2021年提出。该模型利用了随机变量的稳定分布,通过递归地应用扩散过程来生成高质量的图像。与其他生成模型相比,Stable Diffusion在生成高质量的图像方面具有显着优势。具体而言,该模型所生成的图像具有更好的细节保留能力和更自然的外观。通过对不同扩散时间的研究,Stable Diffusion还可以实现通过调整时间精度来生成图像的分辨率。

AI图片生成Stable Diffusion环境搭建与运行

         在实践中,Stable Diffusion被广泛应用于图像生成、压缩、修复和增强等应用中。此外,该模型还可以与其他深度学习技术结合使用,例如GAN和VAE,以提高生成图像的质量和多样性。总之,Stable Diffusion是一种非常实用且具有潜力的图像生成模型,在未来的研究和应用中将发挥重要作用。

        本文主要介绍Stable Diffusion webui环境搭建,后续将陆续介绍参数设置、API搭建、模型基本原理、训练、部署等内容。具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。

1 环境搭建

        显卡驱动、CUDA、CUDNN、Docker、Python等环境搭建请参考本专栏另一篇博文《Docker AIGC等大模型深度学习环境搭建(完整详细版)》,地址为“https://blog.csdn.net/suiyingy/article/details/130285920”。

1.1 创建Python环境

        这里使用conda创建一个Python 3.10环境,命令如下所示。

conda create -n stdf python=3.10 -y
conda activate stdf

1.2 stable-diffusion-webui环境安装

        stable-diffusion-webui提供了网页前端页面用于Stable Diffusion模型生成图片,其Github官方工程地址为“https://github.com/AUTOMATIC1111/stable-diffusion-webui”。官方工程页面提供了安装步骤,包括一些自动安装脚本。这里主要是手动进行安装,并在Ubuntu 18.04与Ubuntu 20.04上进行验证,其环境安装命令如下所示。手动进行安装的好处在于及时了解报错信息并进行修复。

conda activate stdf
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
cd stable-diffusion-webui
pip install -r requirements_versions.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2 启动stable-diffusion-webui

        stable-diffusion-webui的启动命令为“python launch.py”,启动后程序会自动安装和下载所依赖的其它环境。安装过程中出现的问题及解决方式如下所示。运行成功后,我们可通过网页浏览器访问,默认端口号为7860,访问地址为“IP:7860”或“0.0.0.0:7860”或“127.0.0.1:7860”或“localhost:7860”。如果需要通过其它主机进行访问,需要让防火墙允许该端口,命令为“sudo ufw allow 7860”。

        运行成功后页面如下。安装过程中出现的问题及解决方式如下所示。

AI图片生成Stable Diffusion环境搭建与运行

2.1 openclip安装不上

        Openclip无法安装原因可能是网络问题导致无法获取到github上相应资源,因而可通过将其替换为gitee上对应资源加以解决。具体修改方式为将launch.py文件中的openclip_package所在行替换为如下内容,位于第234行左右。

openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://gitee.com/ufhy/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")

2.2 libGL.so

        缺乏libGL.so库的报错信息为“ImportError: libGL.so.1: cannot open shared object file: No such file or directory”。该错误在安装opencv是经常会遇到,是系统本身缺乏相应库所导致的。解决方案如下。

apt update
apt install libgl1-mesa-glx -y

2.3 NaN

        由于精度问题导致模型出现NaN错误,以致于无法正常生成图片。这个问题在切换到Stable Diffusion v2.1版本模型时可能会出现。具体问题如下所示:

NansException: A tensor with all NaNs was produced in VAE. This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this. Use --disable-nan-check commandline argument to disable this check.

        解决方法是将launch.py文件中的commandline_args = os.environ.get('COMMANDLINE_ARGS', "")替换为如下内容,位于第13行左右。

commandline_args = os.environ.get('COMMANDLINE_ARGS', "--no-half")

3 模型替换

        Stable Diffusion模型有多个版本,当前运行launch.py程序时会自动下载v1.5版本模型。Stable Diffusion模型存储在models/Stable-diffusion/下,如下图所示。我们可以去huggingface网站“https://huggingface.co/”上搜索并下载对应模型,然后将模型放到该文件夹下即可。下载时仅需要下载.safetensors后缀的模型文件即可。

AI图片生成Stable Diffusion环境搭建与运行

         例如,stable-diffusion-2-1的下载地址为“https://huggingface.co/stabilityai/stable-diffusion-2-1”,点击页面中的“Files and versions”即可看到对应的模型文件。我们可以只下载其中.safetensors后缀的模型文件,也可以通过Git LFS下载全部内容。Git LFS安装与模型下载请参考《ChatGPT平替-ChatGLM环境搭建与部署运行》,地址为“https://blog.csdn.net/suiyingy/article/details/130370190”。

AI图片生成Stable Diffusion环境搭建与运行

 4 启动端口修改

        如上所述,程序默认启动端口为7860,我们可通过命令“python launch.py --port 5800”来指定端口号。修改webui.py文件的第260行也可以改变端口号,如下所示。这里将share直接设置成True后可以允许公网访问。Server_name最好设置成“0.0.0.0”,如果设置成“127.0.0.1”,那么也可能会导致公网无法访问。

app, local_url, share_url = shared.demo.launch(
            share=True,
            server_name='0.0.0.0',
            server_port=5900,

AI图片生成Stable Diffusion环境搭建与运行

5 后台运行

        默认情况下,关闭启动launch.py的终端窗口后,程序会退出。如果希望程序在后台运行,那么可以通过nohup命令实现。

        (1)保存日志到nohup.out

        “nohup python launch.py &”可使程序保持在后台运行,并且日志信息会保存到nohup.out文件。

        (2)不保存日志

        不保存日志的后台运行命令为“: nohup python launch.py > /dev/null 2>&1 &”。

        (3)关闭进程

        如果需要关闭后台进程,可通过“ps -aux | grep launch.py”查询到进程ID,并通过“kill -9 进程ID”来关闭进程。

        本文主要介绍Stable Diffusion webui环境搭建,后续将陆续详细介绍Stable Diffusion的参数设置、API搭建、模型基本原理、训练、部署等内容。具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。文章来源地址https://www.toymoban.com/news/detail-486197.html

GitHub前缀:https://ghproxy.com/
launch.py:commandline_args = os.environ.get('COMMANDLINE_ARGS', "--xformers")
modules/launch_utils.py:  os.environ['COMMANDLINE_ARGS'] = "xformers"

python launch.py  --server-name 0.0.0.0 --port 8888 --xformers --gradio-queue --enable-insecure-extension-access

https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111.git

https://github.com/Mikubill/sd-webui-controlnet.git
https://github.com/Mikubill/sd-webui-controlnet

到了这里,关于AI图片生成Stable Diffusion环境搭建与运行的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Stable Diffusion 视频和图片帧互换以及AI动画帧生成

    Stable Diffusion 只做AI动画是基于把原有视频按照帧进行提取之后对每一帧的图像进行标准化流程操作,中间可以掺杂Controlnet对人物进行控制,使用对画面进行控制,但是很多小伙伴不太会掌握一些编辑视频软件或者python的操作导致视频转帧,帧转视频会出现一些问题。

    2023年04月09日
    浏览(72)
  • AI绘画部署-Stable Diffusion(huggingface API图片生成初体验)

    最近,在很多地方都看到了各个大佬用AI生成的神图,索性从网上搜集资料部署一下体验一下AI绘画的魅力。本文基于huggingface API在colab上构建AI绘画。 https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb#scrollTo=AAVZStIokTVv 点击右上角 连接 初始化完成

    2024年02月03日
    浏览(72)
  • 图生图—AI图片生成Stable Diffusion参数及使用方式详细介绍

            本文为博主原创文章,未经博主允许不得转载。         本文为专栏《Python从零开始进行AIGC大模型训练与推理》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。         Stable Diffusion webui的详细安装步骤以及文生图(txt2img)功能详细介绍

    2024年02月08日
    浏览(89)
  • 视觉族: 基于Stable Diffusion的免费AI绘画图片生成器工具

    视觉族是一款基于Stable Diffusion文生图模型的免费在线AI绘画图片生成器工具,可以使用提示快速生成精美的艺术图片,支持中文提示。无论你是想要创作自己的原创作品,还是想要为你的文字增添一些视觉效果,视觉族都可以帮助你实现你的想象。 网址链接:https://

    2024年02月09日
    浏览(66)
  • 阿里云免费使用stable diffusion三个月【ai生成图片】详细教程【保姆级】

    这两天关注了ai生成图片,尝试了mijiourney服务【比较贵没入手】,结果免费的没有了,没用上,换了国内的一些小程序体验了下 综合体验式是太慢了,而他们是基于国外开源的stable diffiusion模型开发的【可以比肩mijiourney】,所以我动了开发一个自己用的念头 不会的同学可以

    2024年02月05日
    浏览(138)
  • 用免费GPU部署自己的stable-diffusion项目(AI生成图片)

    2021年时出现了 openAI 的 DALL,但是不开源。2022年一开年,DALL-E 2发布,依然不开源。同年7月,Google 公布其 Text-to-Image 模型 Imagen,并且几乎在同一时间段AI图像生成平台 Midjourney 也进行公测。同年8月,Stable Diffusion 的发布将AIGC和AI绘画彻底带出了圈。Stable Diffusion 是属于生成模

    2024年04月11日
    浏览(62)
  • 【深度学习】Stable Diffusion AI 绘画项目搭建详解,并运行案例

    先把人家的git放过来:https://github.com/CompVis/stable-diffusion 40.7k 的stars, flask 和 django 两个web框架也不过如此数量级吧。 就是给一段文字,它能按照文字描述给你画画。画出来的还挺好看,是一个text-to-image diffusion model 是基于transformer 和多模态的一个产品。 Stable Diffusion is a la

    2024年02月01日
    浏览(57)
  • 搭建环境AI画图stable-diffusion

    本文旨在记录过程,偶然看见一个AI画图的,体验看看。 stable-diffusion是一个输入简单图片,输出科幻性想象后的结果图。 上图! Github地址:https://github.com/CompVis/stable-diffusion 当然,如此梦幻的功能,也需要梦幻的机器条件,请确认你最少有10GB VRam 的GPU,因为最小的模型,也

    2024年02月02日
    浏览(52)
  • 【AI绘图】Stable Diffusion WebUI环境搭建

    Stable Diffusion WebUI开源地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui  首先根据要求做以下准备工作: 1. 安装 Python 3.10.6, 安装时记得勾选\\\"Add Python to PATH\\\"把Python添加到环境变量. 2. 安装Git环境,Git - Downloading Package 3. 用git命令把下载Stable Diffusion WebUI项目:    4. 项目下载到本

    2024年02月04日
    浏览(49)
  • 搭建 AI绘图 Stable Diffusion- WebUI 制作属于自己版权的图片

    前言 Stable Diffusion 是一种深度学习文本到图像生成模型,它主要用于根据文本的描述产生详细图像,亦或者根据现有的图片生成相似的图片。在本地代建Stable Diffusion-webUI需要准备Python环境(3.10.6版本)、可以上外网的梯子,Git拉取代码工具,电脑配置最低建议6G显存,1660TI显卡

    2024年02月16日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包