Python多元线性回归预测模型实验完整版

这篇具有很好参考价值的文章主要介绍了Python多元线性回归预测模型实验完整版。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多元线性回归预测模型

实验目的

通过多元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理

实验内容

多元线性回归预测模型

实验步骤和过程

(1)第一步:学习多元线性回归预测模型相关知识。

一元线性回归模型反映的是单个自变量对因变量的影响,然而实际情况中,影响因变量的自变量往往不止一个,从而需要将一元线性回归模型扩展到多元线性回归模型。
如果构建多元线性回归模型的数据集包含n个观测、p+1个变量(其中p个自变量和1个因变量),则这些数据可以写成下方的矩阵形式:

Python多元线性回归预测模型实验完整版

其中,xij代表第个i行的第j个变量值。如果按照一元线性回归模型的逻辑,那么多元线性回归模型应该就是因变量y与自变量X的线性组合,即可以将多元线性回归模型表示成:
y=β0+β1x1+β2x2+…+βpxn+ε
根据线性代数的知识,可以将上式表示成y=Xβ+ε。
其中,
β为p×1的一维向量,代表了多元线性回归模型的偏回归系数;
ε为n×1的一维向量,代表了模型拟合后每一个样本的误差项。

回归模型的参数求解

在多元线性回归模型所涉及的数据中,因变量y是一维向量,而自变量X为二维矩阵,所以对于参数的求解不像一元线性回归模型那样简单,但求解的思路是完全一致的。为了使读者掌握多元线性回归模型参数的求解过程,这里把详细的推导步骤罗列到下方:

Python多元线性回归预测模型实验完整版

根据线性代数的知识,可以将向量的平方和公式转换为向量的内积,接下来需要对该式进行平方项的展现。

Python多元线性回归预测模型实验完整版

Python多元线性回归预测模型实验完整版

经过如上四步的推导,最终可以得到偏回归系数β与自变量X、因变量y的数学关系。这个求解过程也被成为“最小二乘法”。基于已知的偏回归系数β就可以构造多元线性回归模型。前文也提到,构建模型的最终目的是为了预测,即根据其他已知的自变量X的值预测未知的因变量y的值。

回归模型的预测

如果已经得知某个多元线性回归模型y=β0+β1x1+β2x2+…+βpxn,当有其他新的自变量值时,就可以将这些值带入如上的公式中,最终得到未知的y值。在Python中,实现线性回归模型的预测可以使用predict“方法”,关于该“方法”的参数含义如下:

predict(exog=None, transform=True)

exog:指定用于预测的其他自变量的值。

transform:bool类型参数,预测时是否将原始数据按照模型表达式进行转换,默认为True。

多元线性回归模型是一种统计分析方法,用于研究多个自变量对一个因变量的影响。它是线性回归模型的一种扩展,可以用于解决多个自变量对因变量的影响问题。 在多元线性回归模型中,我们假设因变量 y y y k k k 个自变量 x 1 , x 2 , . . . , x k x_1, x_2, ..., x_k x1,x2,...,xk 之间存在线性关系,即: y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β k x k + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \epsilon y=β0+β1x1+β2x2+...+βkxk+ϵ 其中 β 0 , β 1 , β 2 , . . . , β k \beta_0, \beta_1, \beta_2, ..., \beta_k β0,β1,β2,...,βk 是模型的系数, ϵ \epsilon ϵ 是随机误差项。我们的目标是通过样本数据来估计模型的系数,从而建立预测模型。 多元线性回归模型的建立可以分为以下几个步骤:

收集数据:收集 n n n 组样本数据,每组数据包括因变量 y y y k k k 个自变量 x 1 , x 2 , . . . , x k x_1, x_2, ..., x_k x1,x2,...,xk 的取值。

数据预处理:对数据进行清洗、缺失值处理、异常值处理等预处理工作,以保证数据的质量。

模型建立:利用最小二乘法等方法,对样本数据进行拟合,求出模型的系数 β 0 , β 1 , β 2 , . . . , β k \beta_0, \beta_1, \beta_2, ..., \beta_k β0,β1,β2,...,βk

模型评估:通过各种统计指标,如 R 2 R^2 R2、均方误差等,对模型进行评估,判断模型的拟合效果。

模型应用:利用建立好的模型进行预测或分析,得出实际应用价值。 总之,多元线性回归模型是一种重要的统计分析方法,可以用于解决多个自变量对因变量的影响问题,是各种实际问题中常用的建模方法之一。

(2)第二步:数据准备,数据来源于课本例题。

Python多元线性回归预测模型实验完整版

序号 x1 年份 水路客运量y 市人口数x1 城市GDPx2
1 1991 342 520 211.9
2 1992 466 522.9 244.6
3 1993 492 527.1 325.1
4 1994 483 531.5 528.1
5 1995 530 534.7 645.1
6 1996 553 537.4 733.1
7 1997 581.5 540.4 829.7
8 1998 634.8 543.2 926.3
9 1999 656.1 545.3 1003.1
10 2000 664.4 551.5 1110.8
11 2001 688.3 554.6 1235.6
12 2002 684.4 557.93 1406

(3)第三步:使用 Python 编写实验代码并做图。

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 读取Excel文件
data = pd.read_excel('E:\\File\\class\\数据挖掘\\test2.xlsx')
X = data[['市人口数x1', '城市GDPx2']]
y = data['水路客运量y']
# 训练模型
model = LinearRegression()
model.fit(X, y)
# 预测未来水路客运量
x_new = [[560, 1546]]
y_pred = model.predict(x_new)
print("预测未来水路客运量为:", y_pred[0])
print(X)
print(X['市人口数x1'])
# 绘制图像
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
# ax.scatter(X[:, 0], X[:, 1], y)
ax.scatter(X['市人口数x1'], X['城市GDPx2'], y)
# x1, x2 = np.meshgrid(X[:, 0], X[:, 1])
x1, x2 = np.meshgrid(X['市人口数x1'], X['城市GDPx2'])
y_pred = model.predict(np.array([x1.flatten(), x2.flatten()]).T).reshape(x1.shape)
ax.plot_surface(x1, x2, y_pred, alpha=0.5, cmap='viridis')
ax.set_xlabel('市人口数x1')
ax.set_ylabel('城市GDPx2')
ax.set_zlabel('水路客运量y')
plt.title('多元线性回归预测模型案例')
plt.show()

代码解释:

上面代码使用了Python中的pandas、numpy、scikit-learn和matplotlib库,实现了一个多元线性回归预测模型的案例。代码的主要功能是读取一个Excel文件中的数据,利用多元线性回归模型对数据进行拟合和预测,最后可视化结果。 具体代码解释如下:

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

首先导入所需的库,包括pandas、numpy、scikit-learn和matplotlib库。其中,LinearRegression类用于实现多元线性回归模型,Axes3D类用于绘制三维图形。

#读取Excel文件
data = pd.read_excel(‘E:\File\class\数据挖掘\test2.xlsx’)

利用pandas库中的read_excel方法读取Excel文件中的数据。

X = data[[‘市人口数x1’, ‘城市GDPx2’]]
y = data[‘水路客运量y’]

将读取到的数据按照自变量和因变量的关系进行划分,X表示自变量,y表示因变量。

#训练模型
model = LinearRegression()
model.fit(X, y)

利用scikit-learn库中的LinearRegression类进行多元线性回归模型的训练,fit方法用于拟合数据。

#预测未来水路客运量
x_new = [[560, 1546]]
y_pred = model.predict(x_new)
print(“预测未来水路客运量为:”, y_pred[0])

利用训练好的模型对新的数据进行预测,predict方法用于预测。输出预测结果。

print(X)
print(X[‘市人口数x1’])

输出自变量的数据。

#绘制图像
fig = plt.figure()
ax = fig.add_subplot(projection=‘3d’)
#ax.scatter(X[:, 0], X[:, 1], y)
ax.scatter(X[‘市人口数x1’], X[‘城市GDPx2’], y)
#x1, x2 = np.meshgrid(X[:, 0], X[:, 1])
x1, x2 = np.meshgrid(X[‘市人口数x1’], X[‘城市GDPx2’])
y_pred = model.predict(np.array([x1.flatten(), x2.flatten()]).T).reshape(x1.shape)
ax.plot_surface(x1, x2, y_pred, alpha=0.5, cmap=‘viridis’)
ax.set_xlabel(‘市人口数x1’)
ax.set_ylabel(‘城市GDPx2’)
ax.set_zlabel(‘水路客运量y’)
plt.title(‘多元线性回归预测模型案例’)
plt.show()

这一部分是绘制一个三维图形,其中fig是一个Figure对象,ax是一个Axes3D对象。首先用scatter方法绘制出原始数据点的三维散点图,然后用meshgrid方法将自变量的取值进行网格化,用predict方法预测出因变量的取值,最后用plot_surface方法绘制出三维图形。常用的参数有:alpha表示透明度,cmap表示颜色映射,set_xlabel、set_ylabel和set_zlabel分别表示三个坐标轴的标签,title表示图形的标题。最后调用show方法显示图形。

(4)第四步:实验结果。
绘图和预测当市人口数x1为560以及城市GDPx2为1546时的水路客运量y。

Python多元线性回归预测模型实验完整版

Python多元线性回归预测模型实验完整版

Python多元线性回归预测模型实验完整版

这里的预测结果为:711.2940429652463

实验总结

通过本次实验,我学习了多元线性回归预测模型的基本原理和建立方法,了解了如何使用Python编程实现预测模型。同时,我们也使用水路客运量预测实例,对线性回归模型进行了实际应用和分析。在实验中,我掌握了数据预处理、模型训练和结果评估等关键技术,对于今后的数据分析和预测工作将有很大的帮助。同时在这个过程之中也出现了一些问题,但通过查阅相关资料最终这些问题都得以解决。在这个过程中我的动手实践能力的到提升,也让我明白了实际动手操作的重要性,在实际操作中可以发现很多平时发现不了的问题,通过实践最终都得以解决。文章来源地址https://www.toymoban.com/news/detail-486290.html

到了这里,关于Python多元线性回归预测模型实验完整版的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 多元线性回归模型

    目录 一、一元线性回归之旧轿车价格案例 二、多元线性回归之洞庭湖污染物案例实测 三、说一说plot函数的用法 四、感想 直接上例题 一、一元线性回归之旧轿车价格案 以x表示使用年数,y表示相应平均价格。根据表中x、y的数据,建立一个数据模型,分析旧轿车平均价格与

    2024年02月05日
    浏览(41)
  • 机器学习10—多元线性回归模型

    在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化

    2023年04月24日
    浏览(48)
  • 如何对多元线性回归模型调参?

    多元线性回归模型通常不像复杂的机器学习模型那样拥有许多可调节的超参数。然而,仍有一些关键步骤和技巧可以用于优化多元线性回归模型的性能: 特征选择 移除无关特征:通过分析特征与目标变量的关联度,移除与目标变量关联度低的特征。 使用特征选择方法:可以

    2024年01月23日
    浏览(41)
  • 【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?

            在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。         因此多元线性回归模型区别与一元线

    2024年01月22日
    浏览(46)
  • 多元回归预测 | Matlab基于逻辑回归(Logistic Regression)的数据回归预测,多输入单输出模型

    效果一览 文章概述 多元回归预测 | Matlab基于逻辑回归(Logistic Regression)的数据回归预测,多输入单输出模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月13日
    浏览(56)
  • 多元回归预测 | Matlab灰狼算法(GWO)优化极限梯度提升树XGBoost回归预测,GWO-XGBoost回归预测模型,多变量输入模型

    效果一览 文章概述 多元回归预测 | Matlab灰狼算法(GWO)优化极限梯度提升树XGBoost回归预测,GWO-XGBoost回归预测模型,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月12日
    浏览(40)
  • 多元回归预测 | Matlab粒子群算法(PSO)优化极限梯度提升树XGBoost回归预测,PSO-XGBoost回归预测模型,多变量输入模型

    效果一览 文章概述 粒子群算法(PSO)优化极限梯度提升树XGBoost回归预测,PSO-XGBoost回归预测模型,多变量输入模型,多变量输入模型,matlab代码回归预测,多变量输入模型,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。

    2024年02月13日
    浏览(55)
  • 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型

    效果一览 文章概述 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月13日
    浏览(51)
  • 利用python实现多元线性回归

    本文介绍了如何用python进行回归分析 直线回归分析是研究两变量(自变量和因变量)之间的依存关系及其关系的具体方程的形式。分析中所形成的这种关系式称为回归模型,其中以一条直线方程表明的两个变量的依存关系的模型叫一元线性回归模型。 一元线性回归模型研究

    2024年02月11日
    浏览(38)
  • Python多元线性回归sklearn

    2024年01月24日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包