OpenPCDet安装、使用方式及自定义数据集训练

这篇具有很好参考价值的文章主要介绍了OpenPCDet安装、使用方式及自定义数据集训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

OpenPCDet安装、使用方式及自定义数据集训练

个人博客

OpenPCDet安装

# 先根据自己的cuda版本,安装对应的spconv
pip install spconv-cu113

# 下载OpenPCDet并安装
git clone https://github.com/open-mmlab/OpenPCDet.git
cd OpenPCDet
pip install -r requirements.txt 
python setup.py develop

# 安装open3d(可视化工具)(推荐)
pip install open3d

# (可选)安装mayavi(可视化工具)
pip install vtk
pip install mayavi
pip install PyQt5

安装完,就可以运行demo.py,测试一下。(需要准备好模型和数据文件)

python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml --ckpt pv_rcnn_8369.pth --data_path ../data/kitti/testing/velodyne/000001.bin

如果出现SharedArray相关的错误的话,可以适当的降低其版本。例如pip install -U SharedArray==3.1

注意,demo.py运行成功需要在具有显示设备的条件下,如果只有终端的话是无法运行成功的。

KITTI数据集训练

首先需要准备KITTI数据集,为了快速训练演示,选取100个数据进行训练。将数据集按照以下目录格式存放。

OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools

ImageSets中存在train.txt val.txt test.txt文本,其内容为训练、验证和测试使用的数据。

运行下面的代码以生成infos,生成的文件可在data/kitti找到。

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

openPCDet的可训练网络配置(KITTI数据集)存放在cfgs/kitti_models目录下。以pv_rcnn训练为例,由于本次没有使用planes数据,将pv_rcnn.yaml中的USE_ROAD_PLANE改成False。之后在tools目录下运行下面代码即可进行训练。

python train.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml --batch_size 1 --workers 1 --epochs 10

OpenPCDet安装、使用方式及自定义数据集训练

训练结束后可以在output/kitti_models目录中找到模型文件。

训练注意事项—train.py(以KITTI数据集为例)

  1. 如果不指定具体的ckpt,train.py中会默认加载最新的ckpt。换句话说,如果上一次训练pv_rcnn网络的epochs为5,得到了5个ckpt,下一次训练pv_rcnn的时候没有指定ckpt且epochs值小于等于5,那么就不会进入训练而是直接进入eval。如果本次epochs为大于5的值,则会接着epochs=5的ckpt训练。

    # trian.py中的相关代码
    # 如果ckpt不为None的话,就加载该ckpt,并从指定ckpt的epoch开始训练
    if args.ckpt is not None:
        it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist_train, optimizer=optimizer, logger=logger)
        last_epoch = start_epoch + 1
    else:
        # 如果为None的话,会默认加载最新的ckpt
        ckpt_list = glob.glob(str(ckpt_dir / '*.pth'))
    
        if len(ckpt_list) > 0:
            # 按时间进行排序
            ckpt_list.sort(key=os.path.getmtime)
            while len(ckpt_list) > 0:
                try:
                    it, start_epoch = model.load_params_with_optimizer(
                        ckpt_list[-1], to_cpu=dist_train, optimizer=optimizer, logger=logger
                    )
                    last_epoch = start_epoch + 1
                    break
                except:
                    ckpt_list = ckpt_list[:-1]
    
  2. max_ckpt_save_num参数代表最大保存ckpt的数量。如果当前ckpt的数量多于最大保存ckpt数量,那么会删除几个时间最早的ckpt。默认为30.

    # train_utils.py中的相关代码
    ckpt_list = glob.glob(str(ckpt_save_dir / 'checkpoint_epoch_*.pth'))
    ckpt_list.sort(key=os.path.getmtime)
    
    # 如果当前ckpt的数量多于最大保存ckpt数量,那么会删除几个时间最早的ckpt
    if ckpt_list.__len__() >= max_ckpt_save_num:
        for cur_file_idx in range(0, len(ckpt_list) - max_ckpt_save_num + 1):
            os.remove(ckpt_list[cur_file_idx])
    
  3. ckpt_save_time_interval参数代表每隔{ckpt_save_time_interval}秒保存一次ckpt。默认为300

  4. train.py中的eval使用的数据集是kitti_dataset.yaml中的test值。默认配置下,kitti_dataset.yaml中test值为val,如下面代码所示:

    # kitti_dataset.yaml
    """
    总得来说,在训练的时候'train'和'test'分别对应训练集和验证集;在测试的时候'test'对应测试集。
    所以需要根据训练和测试任务更换test的配置。
    """
    
    # 需要加载的文件名称,默认为train.txt val.txt
    DATA_SPLIT: {
        'train': train,
        'test': val
    }
    
    # 需要加载的pkl文件 可以设置多个
    INFO_PATH: {
        'train': [kitti_infos_train.pkl],
        'test': [kitti_infos_val.pkl],
    }
    

如果想要修改val数据集,就需要修改DATA_SPLITINFO_PATH中的test值。

  1. num_epochs_to_eval参数代表只评估最后{num_epochs_to_eval}个epoch。比如当num_epochs_to_eval为1的时候,总epochs为5,那么只会评估后面4个epoch。默认为0,也就是每个epoch都评估。

  2. build_dataloader函数中

    # 使用变量 dataset_cfg.DATASET 中指定的数据集类型,创建一个数据集对象 dataset
    # 如果dataset_cfg.DATASET为KittiDataset,那么返回的dataset为kitti_dataset.py中的KittiDataset类型
    dataset = __all__[dataset_cfg.DATASET](
        dataset_cfg=dataset_cfg,
        class_names=class_names,
        root_path=root_path,
        training=training,
        logger=logger,
    )
    
  3. cfg_from_yaml_file函数将网络yaml和数据集yaml合并在一起,如果存在相同的key,则用网络yaml相应的val替换。因此如果网络yaml和数据集yaml中存在相同类型的配置,比如数据增强,那么最终训练使用的配置是网络yaml中的配置。实现这部分的相关代码可以在config.py中找到。

测试注意事项—test.py(以KITTI数据集为例)

  1. 运行test.py使用的测试数据集可以在kitti_dataset.yaml中的DATA_SPLITINFO_PATH找到相关配置。其中,它加载的测试数据集是INFO_PATH中的test值,这个值是一个列表,里面可以填多个.pkl文件,这部分的加载代码可以在kitti_dataset.pyinclude_kitti_data函数中找到;DATA_SPLIT中的test值默认为val,表示加载val.txt。

    所以说如果想要修改测试数据集就需要修改DATA_SPLITINFO_PATH中的test值。

    # kitti_dataset.yaml
    """
    总得来说,在训练的时候'train'和'test'分别对应训练集和验证集;在测试的时候'test'对应测试集。
    所以需要根据训练和测试任务更换test的配置。
    """
    # 需要加载的文件名称,默认为train.txt val.txt
    DATA_SPLIT: {
        'train': train,
        'test': val
    }
    
    # 需要加载的pkl文件 可以设置多个
    INFO_PATH: {
        'train': [kitti_infos_train.pkl],
        'test': [kitti_infos_val.pkl],
    }
    

demo.py和open3d_vis_utils.py分析(以KITTI数据集为例)

  1. 使用Demo.py时,如果传入数据集参数时文件夹,则会获取文件夹所有符合后缀条件(.bin/.npy)的文件。

  2. 模型预测结果pred_dicts是一个列表,列表元素为字典,字典包含’pred_boxes’, ‘pred_scores’, 'pred_labels’三个键。

  3. 在open3d_vis_utils.py开头加入下面代码,目的是方式警告。不知道是什么原因,使用的时候一直会报颜色设置错误的警告。

    # 关闭警告
    open3d.utility.set_verbosity_level(open3d.utility.VerbosityLevel.Error)
    
  4. draw_box函数中可以得到box3d,它是OrientedBoundingBox类型,所以可以通过get_box_pointsget_center等函数获得相应的点坐标。

  5. 可以在draw_box函数中加入下面代码,功能是给方框标记中心点,中心点的颜色与方框相同。

    # 给方框标记中心点
    if center:
        sphere_center = open3d.geometry.TriangleMesh.create_sphere(radius=0.1)
        sphere_center.paint_uniform_color(box_colormap[ref_labels[i]])
        sphere_center.translate(box3d.get_center())
        vis.add_geometry(sphere_center)
    
  6. 可以在open3d_vis_utils.py中添加下面的代码用于绘制POINT_CLOUD_RANGE。如图所示,红色框为点云边界框。

    # 根据最大边界点和最小边界点画出方框---在这里是用于画POINT_CLOUD_RANGE的,该参数配置于voxset.yaml
    min_bound = [0, -39.68, -3]
    max_bound = [69.12, 39.68, 1]
    bbox = open3d.geometry.AxisAlignedBoundingBox(min_bound, max_bound)
    bbox_lines = open3d.geometry.LineSet.create_from_axis_aligned_bounding_box(bbox)
    bbox_lines.paint_uniform_color([1, 0, 0])
    vis.add_geometry(bbox_lines)
    

OpenPCDet安装、使用方式及自定义数据集训练

使用自定义数据集进行训练

官方教程

准备数据集

首先需要按照官方教程创建文件目录,如下所示。

OpenPCDet
├── data
│   ├── custom
│   │   │── ImageSets
│   │   │   │── train.txt
│   │   │   │── val.txt
│   │   │── points
│   │   │   │── 000000.npy
│   │   │   │── 999999.npy
│   │   │── labels
│   │   │   │── 000000.txt
│   │   │   │── 999999.txt
├── pcdet
├── tools

使用SUSTechPOINTS标注完后会得到json格式的标签文件,我们需要提取有用的内容再保存成txt格式。

OpenPCDet支持的自定义label文件格式如下所示

# format: [x y z dx dy dz heading_angle category_name]
1.50 1.46 0.10 5.12 1.85 4.13 1.56 Vehicle
5.54 0.57 0.41 1.08 0.74 1.95 1.57 Pedestrian

其中最后一个heading_angle,就是json标签文件中的rotation的z值。不过这个地方需要确保自己点云坐标系(激光雷达坐标系)与OpenPCDet中规定的坐标系是一致的,不然还需要转换成OpenPCDet坐标系。

OpenPCDet安装、使用方式及自定义数据集训练

可以使用下面这个函数实现将json格式的标签文件转换成符合OpenPCDet训练的标签文件。

def json_to_txt(json_path, txt_path):
    """
    将json文件转化成符合OpenPCDet训练的标签文件
    	json_path: json文件所在目录
    	txt_path: 生成txt文件目录
    """
    json_list = os.listdir(json_path)
    for json_name in json_list:
        json_file = os.path.join(json_path, json_name)
        
        with open(json_file, 'r') as f:
            data = json.load(f)
        label_list = []
        for obj_dict in data:
            label_name = obj_dict["obj_type"]
            pos_xyz = obj_dict["psr"]["position"]
            rot_xyz = obj_dict["psr"]["rotation"]
            scale_xyz = obj_dict["psr"]["scale"]
            
            temp = ""
            for xyz_dict in [pos_xyz, scale_xyz]:
                for key in ["x", "y", "z"]:
                    temp += str(xyz_dict[key])
                    temp += " "
            temp += str(rot_xyz["z"]) + " " + str(label_name) + "\n"
            label_list.append(temp)

        txt_name = json_name.split(".")[0] + ".txt"
        with open(os.path.join(txt_path, txt_name), "w") as f:
            for label in label_list:
                f.write(label)

除了需要转换标签文件,还需要将pcd格式的点云转换成npy格式。可以使用下面的函数实现。

def pcd_to_npy(pcd_path, npy_path):
    """
        将pcd文件转换成npy文件
        pcd_path: pcd格式点云目录
        npy_path: npy格式点云输出目录
    """
    pcd_list = os.listdir(pcd_path)
    for pcd_name in pcd_list:
        pcd_file = os.path.join(pcd_path, pcd_name)
        lidar = []
        pcd = o3d.io.read_point_cloud(pcd_file)
        points = np.array(pcd.points)

        for linestr in points:
            if len(linestr) == 3:  # only x,y,z
                linestr_convert = list(map(float, linestr))
                linestr_convert.append(0)
                lidar.append(linestr_convert)
            if len(linestr) == 4:  # x,y,z,i
                linestr_convert = list(map(float, linestr))

        lidar = np.array(lidar).astype(np.float32)
        np.save(os.path.join(npy_path, pcd_name[:-4]+".npy"), lidar)

可以使用下面的函数快速生成train.txt和val.txt

def get_train_val_txt(src_path, dst_path, num_of_train):
    """
    	src_path: 标签文件目录
    	dst_path: 输出文件目录
    	num_of_train: 训练集样本数量
    """
    src_list = os.listdir(src_path)
    random.shuffle(src_list)
    with open(os.path.join(dst_path, "train.txt"), 'w') as f:
        for index in range(num_of_train):
            f.write(src_list[index].split(".")[0])
            f.write('\n')
    with open(os.path.join(dst_path, "val.txt"), 'w') as f:
        for index in range(num_of_train, len(src_list)):
            f.write(src_list[index].split(".")[0])
            f.write('\n')

将npy点云、txt标签、train.txt和val.txt放到指定目录下。修改custom_dataset.py,需要根据自己数据集修改分类类别。

OpenPCDet安装、使用方式及自定义数据集训练

修改custom_dataset.yaml。主要关注以下内容:

# 与KITTI数据集映射   左边是自己数据集   右边是KITTI数据集
# 这个地方只会在eval阶段会用到,所以如果自己不需要eval的话可以不加
MAP_CLASS_TO_KITTI: {
    # 'Vehicle': 'Car'
    'Pedestrian': 'Pedestrian',
    'BicycleRider': 'Cyclist',
}
# 需要与自己的点云数据格式对应,一般不需要改
POINT_FEATURE_ENCODING: {
    encoding_type: absolute_coordinates_encoding,
    used_feature_list: ['x', 'y', 'z', 'intensity'],
    src_feature_list: ['x', 'y', 'z', 'intensity'],
}
DATA_AUGMENTOR:
    DISABLE_AUG_LIST: ['placeholder']
    AUG_CONFIG_LIST:
        - NAME: gt_sampling
          USE_ROAD_PLANE: False
          DB_INFO_PATH:
              - custom_dbinfos_train.pkl
          PREPARE: {
          	# 需要改成自己的数据集类别
            filter_by_min_points: ['Pedestrian:5', 'BicycleRider:5'],
            # filter_by_difficulty: [-1], # 这个地方如果不注释的话训练可能会报错,可以自己尝试一下
          }
		  # 需要改成自己的数据集类别
          SAMPLE_GROUPS: [Pedestrian:15', 'BicycleRider:15']
          NUM_POINT_FEATURES: 4
          DATABASE_WITH_FAKELIDAR: False
          REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
          LIMIT_WHOLE_SCENE: True

最后在命令行运行下面命令。如果不报错的话就可以得到训练数据集了。

python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml

修改网络yaml配置文件

# 要改成自己的类别
CLASS_NAMES: ['Pedestrian', 'BicycleRider']
# 需要修改成custom_dataset.yaml
_BASE_CONFIG_: cfgs/dataset_configs/custom_dataset.yaml
# 点云范围 [x_min, y_min, z_min, x_max, y_max, z_max]
# 需要和VOXEL_SIZE满足倍数关系。X和Y轴与体素需要满足16倍的关系。详细配置可以看官方教程。
POINT_CLOUD_RANGE: [0, -15.36, -2, 15.36, 15.36, 2]
# 按照自己数据集修改
DATA_AUGMENTOR:
    DISABLE_AUG_LIST: ['placeholder']
    AUG_CONFIG_LIST:
        - NAME: gt_sampling
        # 该数据增强方法起源于SECOND网络,作者将其他帧ground truth矩形框内的点云抽取出来放在当前帧的空余位置,
        # 以此来形成“新”一帧的训练数据,达到数据增强的目的。
          USE_ROAD_PLANE: False
          DB_INFO_PATH:
              - custom_dbinfos_train.pkl
          PREPARE: {
            # 保留至少5个点的车辆、行人和骑行者
            filter_by_min_points: ['Pedestrian:5', 'BicycleRider:5'],
            # filter_by_difficulty: [-1],
          }
            # 指定需要采样的物体类别和数量
          SAMPLE_GROUPS: ['Pedestrian:15', 'BicycleRider:15']
          NUM_POINT_FEATURES: 4
          DATABASE_WITH_FAKELIDAR: False
          REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
          LIMIT_WHOLE_SCENE: False
# anchor配置,需要适配自己的数据集
ANCHOR_GENERATOR_CONFIG: [
    {
        'class_name': 'Pedestrian',
        # 尺寸 长宽高 单位为米
        'anchor_sizes': [[0.75, 0.66, 1.73]],
        'anchor_rotations': [0, 1.57],    # 旋转角度 0°和90°(弧度π/2=1.57)表示anchor可以沿水平和垂直方向旋转
        'anchor_bottom_heights': [-0.6],    # 底部高度,离地面的高度
        'align_center': False,    # 居中对齐
        'feature_map_stride': 1,    # 特征图步幅
        'matched_threshold': 0.5,    # 匹配阈值    高于这个阈值的被认为是正样本
        'unmatched_threshold': 0.35    # 不匹配阈值    低于这个阈值的被认为是负样本
    },
    {
        'class_name': 'BicycleRider',
        'anchor_sizes': [[1.83, 0.74, 1.64]],
        'anchor_rotations': [0, 1.57],
        'anchor_bottom_heights': [-0.6],
        'align_center': False,
        'feature_map_stride': 1,
        'matched_threshold': 0.5,
        'unmatched_threshold': 0.35
    }
]

可以使用下面的代码获取自己类别的平均anchor

# 获取每个类别的评价lwh,以此来设置anchor

import os

if __name__ == "__main__":
    label_path = "data/custom/labels"
    label_list = os.listdir(label_path)
    # l w h
    P_counts = 0
    Pedestrian = [0.0, 0.0, 0.0]
    B_counts = 0
    BicycleRider = [0.0, 0.0, 0.0]

    for label_name in label_list:
        label_file = os.path.join(label_path, label_name)
        with open(label_file, 'r') as f:
            data = f.readlines()
            for line in data:
                temp_list = line.split(" ")
                cls_name = temp_list[-1][:-1]
                if cls_name == "Pedestrian":
                    Pedestrian[0] += float(temp_list[3])
                    Pedestrian[1] += float(temp_list[4])
                    Pedestrian[2] += float(temp_list[5])
                    P_counts += 1
                else:
                    BicycleRider[0] += float(temp_list[3])
                    BicycleRider[1] += float(temp_list[4])
                    BicycleRider[2] += float(temp_list[5])
                    B_counts += 1

    print(f"P l{Pedestrian[0]/P_counts} w{Pedestrian[1]/P_counts} h{Pedestrian[2]/P_counts}")
    print(f"B l{BicycleRider[0]/B_counts} w{BicycleRider[1]/B_counts} h{BicycleRider[2]/B_counts}")

按照上述要求修改完就可以训练了。

最后分享一下我自己拍摄标注的数据集:点我下载

这个数据集是以树为目标的,已经处理成自定义数据集的格式了,可以直接使用。文章来源地址https://www.toymoban.com/news/detail-486440.html

到了这里,关于OpenPCDet安装、使用方式及自定义数据集训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink之窗口触发机制及自定义Trigger的使用

    1 窗口触发机制 窗口计算的触发机制都是由Trigger类决定的,Flink中为各类内置的WindowsAssigner都设计了对应的默认Trigger. 层次结构如下: Trigger ProcessingTimeoutTrigger EventTimeTrigger CountTrigger DeltaTrigger NeverTrigger in GlobalWindows ContinuousEventTimeTrigger PurgingTrigger ContinuousProcessingTimeTrigger Proces

    2024年04月17日
    浏览(28)
  • 【Docker】Docker镜像结构及自定义镜像,镜像上传仓库使用

            Docker镜像是一个只读的Docker容器模板,含有启动Docker容器所需的文件系统结构及其内容,因此是启动一个Docker容器的基础。镜像的结构原理图大致分为四层:共享的内核层、基础镜像层、定制镜像层、可写容器层。 共享的内核层 :每个Docker容器运行时都共享宿主

    2024年02月01日
    浏览(47)
  • 【Docker】centos中及自定义镜像,并且上传阿里云仓库可提供使用

                                      🎉🎉欢迎来到我的CSDN主页!🎉🎉                         🏅我是平顶山大师,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《 【Docker】centos中及自定义镜像,并且上传阿里云仓库可提供使用

    2024年02月01日
    浏览(52)
  • 【Docker】Linux中Docker镜像结构及自定义镜像,并且上传仓库可提供使用

    目录 一、镜像结构 1. 基本结构 2. 常用命令 二、自定义镜像 1. 基本镜像 2. 进阶镜像 3. 完善镜像 三、镜像上传仓库 每篇一获 自定义 Docker 镜像有很多用途,以下是一些主要的应用场景: 一致性环境 :通过自定义镜像,您可以确保您的应用在不同的环境中(开发、测试、生

    2024年01月18日
    浏览(46)
  • 西门子300系列基本逻辑编程:手自动选择程序及自定义脉冲模块的使用

    西门子内置脉冲发生器: M0.0 0.1S, M0.1 0.2S, M0.2 0.4S, M0.3 0.5S, M0.4 0.8S, M0.5 1.0S, M0.6 1.6S, M0.7 2.0S。 I0.0是手自动选择开关。 当I0.0闭合,运行手动程序,手动指示灯Q0.0亮。 当I0.0断开时,运行自动程序,手动指示灯Q0.1亮。 下面演示给大家用到了子程序,建议大家多使用子

    2024年02月12日
    浏览(80)
  • Yolov8_使用自定义数据集训练模型1

    前面几篇文章介绍了如何搭建Yolov8环境、使用默认的模型训练和推理图片及视频的效果、并使用GPU版本的torch加速推理、导出.engine格式的模型进一步利用GPU加速,本篇介绍如何自定义数据集,这样就可以训练出识别特定物体的模型。 《Yolov8_使用自定义数据集训练模型1》——

    2024年01月19日
    浏览(45)
  • 04训练——基于YOLO V8的自定义数据集训练——在windows环境下使用pycharm做训练-1总体步骤

    在上文中,笔者介绍了使用google公司提供的免费GPU资源colab来对大量的自定义数据集进行模型训练。该方法虽然简单好用,但是存在以下几方面的短板问题: 一是需要通过虚拟服务器做为跳板机来访问,总体操作起来非常繁杂。 二是需要将大量的数据上传缓慢,管理和使用非

    2024年02月07日
    浏览(49)
  • 44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例--网上有些说法好像是错误的

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月09日
    浏览(43)
  • 【yolov8】从0开始搭建部署YOLOv8,环境安装+推理+自定义数据集搭建与训练,一小时掌握

    bilibili详细视频教程 github链接:https://github.com/ultralytics/ultralytics git拉取项目: git clone https://github.com/ultralytics/ultralytics.git 首先查看pytorch支持的最高版本 PyTorch https://pytorch.org/ 然后查看N卡系统支持最高的版本 然后权衡下载支持最高版本的CUDA和cuDNN CUDA工具包 https://developer.n

    2024年01月17日
    浏览(56)
  • flutter tabBar 的属性及自定义实现

    在Flutter中,TabBar的indicatorPadding属性用于设置指示器的内边距,而不是用于调整指示器和文字之间的间距。要调整TabBar中指示器和文字之间的间距,本篇文章主要讲解如何自定义indicatorPadding的边距问题。 TabBar是一个常用的小部件,用于创建标签页选项卡。下面是一些常用的

    2024年02月14日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包