【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测

这篇具有很好参考价值的文章主要介绍了【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 

目录

1、常见的链路预测方法

2、图神经网络上的链路预测

3、使用PyTorch和DGL库实现图神经网络进行链路预测


链路预测是指在一个给定的网络中,根据已有的网络结构信息,尝试预测两个节点之间是否存在连接或者可能会建立连接的概率。这在社交网络分析、生物信息学、推荐系统等领域中都有广泛的应用。

在复杂网络中,链路预测可以帮助我们理解网络的演化过程、发现隐藏的关系和未知的连接,以及预测未来的网络演化趋势。

1、常见的链路预测方法

  1. 基于相似性的方法:这类方法假设具有相似性的节点之间更有可能存在连接。常见的相似性度量方法包括共同邻居数、Jaccard系数、Adamic/Adar指数等。文章来源地址https://www.toymoban.com/news/detail-486759.html

到了这里,关于【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用PyG(PyTorch Geometric)实现基于图卷积神经网络(GCN)的节点分类任务

    PyG(PyTorch Geometric)是一个基于PyTorch的库,可以轻松编写和训练图神经网络(GNN),用于与结构化数据相关的广泛应用。 它包括从各种已发表的论文中对图和其他不规则结构进行深度学习的各种方法,也称为几何深度学习。此外,它还包括易于使用的迷你批处理加载程序,用

    2023年04月20日
    浏览(44)
  • pytorch工具——使用pytorch构建一个神经网络

    注意

    2024年02月16日
    浏览(38)
  • 数学建模:BP神经网络(含python实现)

      BP 神经网络,也称为多层感知机(Multilayer Perceptron,MLP),是一种常见的神经网络模型,用于解决各种机器学习问题,包括分类和回归。BP 代表“反向传播”(Backpropagation),这是该模型训练的关键算法。   BP 神经网络由多个神经元组成,通常分为输入层、隐藏层和输

    2024年02月20日
    浏览(42)
  • 2023年神经网络与数学建模:原理、实现与案例

    在本博客中,我们将探讨神经网络这一模拟人脑神经元结构的计算模型,以及如何将其应用于数学建模。我们将详细解释神经网络的原理、使用 MATLAB 实现神经网络,并提供一个数学建模案例。博客内容如下: 目录 1. 神经网络简介 2. 神经网络的数学原理 2.1 前向

    2024年02月07日
    浏览(54)
  • PyTorch深度学习实战(3)——使用PyTorch构建神经网络

    我们已经学习了如何从零开始构建神经网络,神经网络通常包括输入层、隐藏层、输出层、激活函数、损失函数和学习率等基本组件。在本节中,我们将学习如何在简单数据集上使用 PyTorch 构建神经网络,利用张量对象操作和梯度值计算更新网络权重。 1.1 使用 PyTorch 构建神

    2024年02月08日
    浏览(46)
  • 【PyTorch框架】——框架安装&使用流程&搭建PyTorch神经网络气温预测

    目录 一、引言 二、使用流程——最简单例子试手 三、分类任务——气温预测   总结: Torch可以当作是能在GPU中计算的矩阵,就是ndarray的GPU版!TensorFlow和PyTorch可以说是当今最流行的框架!PyTorch用起来简单,好用!而TensoFlow用起来没那么自由!caffe比较老,不可处理文本数据

    2024年02月05日
    浏览(41)
  • 数学建模-MATLAB神经网络工具箱实现数据拟合预测

    将数据集保存在矩阵data中 在APP页面找到Neural Net Fitting 3.输入与目标均为 data,Samples are 选择 Matrix rows 4.训练集和验证集的百分比可以自定义,一般默认 三种算法,各有优劣,一般默认第一个,点击Train进行训练 4.点击Performance 5.以此图为例,13.1572代表误差,误差越低越好,可

    2024年02月06日
    浏览(44)
  • 【Pytorch】基于卷积神经网络实现的面部表情识别

    作者:何翔 学院:计算机学院 学号:04191315 班级:软件1903 转载请标注本文链接: https://blog.csdn.net/HXBest/article/details/121981276 面部表情识别 (Facial Expression Recognition ) 在日常工作和生活中,人们情感的表达方式主要有:语言、声音、肢体行为(如手势)、以及面部表情等。在这

    2024年02月04日
    浏览(78)
  • PyTorch+PyG实现图神经网络经典模型目录

    大家好,我是阿光。 本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环

    2024年02月03日
    浏览(43)
  • BP神经网络(Python代码实现)基于pytorch

     BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,它的学习规则是 使用梯度下降法 , 通过反向传播来不断调整网络的权值和阈值 ,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(output layer)。BP网络的学习

    2024年02月11日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包