机器学习—支持向量机

这篇具有很好参考价值的文章主要介绍了机器学习—支持向量机。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

练习5:支持向量机


介绍

在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。

在开始练习前,需要下载如下的文件进行数据上传

  • data.tgz -包含本练习中所需要用的数据文件

其中:

  • ex5data1.mat -数据集示例1
  • ex5data2.mat -数据集示例2
  • ex5data3.mat -数据集示例 3
  • spamTrain.mat -垃圾邮件训练集
  • spamTest.mat -垃圾邮件测试集
  • emailSample1.txt -电子邮件示例1
  • emailSample2.txt -电子邮件示例2
  • spamSample1.txt -垃圾邮件示例1
  • spamSample2.txt -垃圾邮件示例2
  • vocab.txt -词汇表

在整个练习中,涉及如下的必做作业,及标号*选做作业

  • 高斯核的实现--------(30分)
  • 数据集示例3的参数—(30分)
  • 实现垃圾邮件过滤----(40分)
  • 试试你自己的电子邮件*

1 支持向量机

我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。

1.1 数据集示例1

我们要做的第一件事是看一个简单的二维数据集,看看线性SVM如何对数据集进行不同的C值(类似于线性/逻辑回归中的正则化项)。

!tar -zxvf /home/jovyan/work/data.tgz -C /home/jovyan/work/
data/
data/emailSample1.txt
data/emailSample2.txt
data/ex5data1.mat
data/ex5data2.mat
data/ex5data3.mat
data/spamSample1.txt
data/spamSample2.txt
data/spamTest.mat
data/spamTrain.mat
data/vocab.txt

/vocab.txt

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import loadmat
 
raw_data = loadmat('/home/jovyan/work/data/ex5data1.mat')
raw_data
{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Nov 13 14:28:43 2011',
 '__version__': '1.0',
 '__globals__': [],
 'X': array([[1.9643  , 4.5957  ],
        [2.2753  , 3.8589  ],
        [2.9781  , 4.5651  ],
        [2.932   , 3.5519  ],
        [3.5772  , 2.856   ],
        [4.015   , 3.1937  ],
        [3.3814  , 3.4291  ],
        [3.9113  , 4.1761  ],
        [2.7822  , 4.0431  ],
        [2.5518  , 4.6162  ],
        [3.3698  , 3.9101  ],
        [3.1048  , 3.0709  ],
        [1.9182  , 4.0534  ],
        [2.2638  , 4.3706  ],
        [2.6555  , 3.5008  ],
        [3.1855  , 4.2888  ],
        [3.6579  , 3.8692  ],
        [3.9113  , 3.4291  ],
        [3.6002  , 3.1221  ],
        [3.0357  , 3.3165  ],
        [1.5841  , 3.3575  ],
        [2.0103  , 3.2039  ],
        [1.9527  , 2.7843  ],
        [2.2753  , 2.7127  ],
        [2.3099  , 2.9584  ],
        [2.8283  , 2.6309  ],
        [3.0473  , 2.2931  ],
        [2.4827  , 2.0373  ],
        [2.5057  , 2.3853  ],
        [1.8721  , 2.0577  ],
        [2.0103  , 2.3546  ],
        [1.2269  , 2.3239  ],
        [1.8951  , 2.9174  ],
        [1.561   , 3.0709  ],
        [1.5495  , 2.6923  ],
        [1.6878  , 2.4057  ],
        [1.4919  , 2.0271  ],
        [0.962   , 2.682   ],
        [1.1693  , 2.9276  ],
        [0.8122  , 2.9992  ],
        [0.9735  , 3.3881  ],
        [1.25    , 3.1937  ],
        [1.3191  , 3.5109  ],
        [2.2292  , 2.201   ],
        [2.4482  , 2.6411  ],
        [2.7938  , 1.9656  ],
        [2.091   , 1.6177  ],
        [2.5403  , 2.8867  ],
        [0.9044  , 3.0198  ],
        [0.76615 , 2.5899  ],
        [0.086405, 4.1045  ]]),
 'y': array([[1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1]], dtype=uint8)}

我们将其用散点图表示,其中类标签由符号表示(+表示正类,o表示负类)。

data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']
 
positive = data[data['y'].isin([1])]
negative = data[data['y'].isin([0])]
 
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

机器学习—支持向量机

from sklearn import svm
svc = svm.LinearSVC(C=1, loss='hinge', max_iter=1000)
svc
LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='hinge', max_iter=1000, multi_class='ovr',
     penalty='l2', random_state=None, tol=0.0001, verbose=0)

首先,我们使用 C=1 看下结果如何。

svc.fit(data[['X1', 'X2']], data['y'])
svc.score(data[['X1', 'X2']], data['y'])
/opt/conda/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)





0.9803921568627451
data['SVM 1 Confidence'] = svc.decision_function(data[['X1', 'X2']])
 
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(data['X1'], data['X2'], s=50, c=data['SVM 1 Confidence'], cmap='seismic')
ax.set_title('SVM (C=1) Decision Confidence')
plt.show()

机器学习—支持向量机

其次,让我们看看如果C的值越大,会发生什么

svc2 = svm.LinearSVC(C=100, loss='hinge', max_iter=1000)
svc2.fit(data[['X1', 'X2']], data['y'])
svc2.score(data[['X1', 'X2']], data['y'])
/opt/conda/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)





0.9411764705882353

这次我们得到了训练数据的完美分类,但是通过增加C的值,我们创建了一个不再适合数据的决策边界。 我们可以通过查看每个类别预测的置信水平来看出这一点,这是该点与超平面距离的函数。

data['SVM 2 Confidence'] = svc2.decision_function(data[['X1', 'X2']])
 
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(data['X1'], data['X2'], s=50, c=data['SVM 2 Confidence'], cmap='seismic')
ax.set_title('SVM (C=100) Decision Confidence')
plt.show()

机器学习—支持向量机

可以看看靠近边界的点的颜色,区别是有点微妙。 如果您在练习文本中,则会出现绘图,其中决策边界在图上显示为一条线,有助于使差异更清晰。

1.2 带有高斯核的SVM

现在我们将从线性SVM转移到能够使用内核进行非线性分类的SVM。 我们首先负责实现一个高斯核函数。 虽然scikit-learn具有内置的高斯内核,但为了实现更清楚,我们将从头开始实现。

1.2.1 高斯核

你可以将高斯核近似认为具有衡量两个样本之间的“距离”的功能。高斯内核还通过带宽参数 θ \theta θ进行参数化,该参数决定随着示例之间的距离越来越近,相似性度量降低的速度(到0)。

高斯核的公式如下所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mOjb47Ku-1686574855670)(5-1.png)]

现在,你需要编码代码实现以上公式,用于计算高斯核

要点

  • 定义gaussian_kernel函数,参数列表为x1,x2,sigma
  • x1x2代表两个样本,sigma代表高斯核中的参数值。
  • 对于给定的测试代码,输出值应为0.324652
###在这里填入代码###
def gaussian_kernel(x1, x2, sigma):
    return np.exp(-(np.sum((x1 - x2) ** 2)) / (2 * (sigma ** 2)))
###请运行并测试你的代码###
x1 = np.array([1.0, 2.0, 1.0])
x2 = np.array([0.0, 4.0, -1.0])
sigma = 2
 
gaussian_kernel(x1, x2, sigma)
0.32465246735834974
1.2.2 数据集示例2

接下来,我们将检查另一个数据集,这次用非线性决策边界。

raw_data = loadmat('work/data/ex5data2.mat')
 
data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']
 
positive = data[data['y'].isin([1])]
negative = data[data['y'].isin([0])]
 
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['X1'], positive['X2'], s=30, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=30, marker='o', label='Negative')
ax.legend()
plt.show()

机器学习—支持向量机

对于该数据集,我们将使用内置的RBF内核构建支持向量机分类器,并检查其对训练数据的准确性。 为了可视化决策边界,这一次我们将根据实例具有负类标签的预测概率来对点做阴影。 从结果可以看出,它们大部分是正确的。

csvc = svm.SVC(C=100, gamma=10, probability=True)
csvc
SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=10, kernel='rbf',
  max_iter=-1, probability=True, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
csvc.fit(data[['X1', 'X2']], data['y'])
csvc.score(data[['X1', 'X2']], data['y'])
1.0
data['Probability'] = csvc.predict_proba(data[['X1', 'X2']])[:,0]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(data['X1'], data['X2'], s=30, c=data['Probability'], cmap='Reds')
plt.show()

机器学习—支持向量机

1.2.3 数据集示例3


对于第三个数据集,我们给出了训练和验证集,并且基于验证集性能为SVM模型找到最优超参数。 虽然我们可以使用scikit-learn的内置网格搜索来做到这一点,但是本着遵循练习的目的,我们将从头开始实现一个简单的网格搜索。

你的任务是使用交叉验证集 X v a l , y v a l Xval,yval Xvalyval来确定要使用的最佳参数 C C C σ \sigma σ

你应该编写任何必要的其他代码来帮助您搜索参数 C C C σ \sigma σ。对于 C C C σ \sigma σ,我们建议以乘法步骤尝试值(例如0.01、0.03、0.1、0.3、1、3、10、30)。请注意,您应尝试 C C C σ \sigma σ的所有可能值对(例如, C = 0.3 , σ = 0.1 C = 0.3,\sigma= 0.1 C=0.3,σ=0.1)。 例如,如果您尝试使用上面列出的 C C C σ 2 \sigma^2 σ2的8个值中的每一个,最终将训练和评估(在交叉验证集上)总共 8 2 = 64 8^2= 64 82=64个不同模型。

raw_data = loadmat('work/data/ex5data3.mat')
 
X = raw_data['X']
Xval = raw_data['Xval']
y = raw_data['y'].ravel()
yval = raw_data['yval'].ravel()
 
C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
 
best_score = 0
best_params = {'C': None, 'gamma': None}
 
###在这里填入代码###
 
for C in C_values:
    for gamma in gamma_values:
        svc = svm.SVC(C=C,gamma=gamma)
        svc.fit(X,y)
        score = svc.score(Xval,yval)
 
        if score > best_score:
            best_score =score
            best_params['C']=C
            best_params['gamma'] = gamma
 
best_score, best_params
(0.965, {'C': 0.3, 'gamma': 100})

2 垃圾邮件分类


在这一部分中,我们的目标是使用SVM来构建垃圾邮件过滤器。

2.1 邮件预处理

在练习文本中,有一个任务涉及一些文本预处理,以获得适合SVM处理的格式的数据。 然而,这个任务很简单(将字词映射到为练习提供的字典中的ID),而其余的预处理步骤(如HTML删除,词干,标准化等)已经完成。 我将跳过机器学习任务,而不是重现这些预处理步骤,其中包括从预处理过的训练集构建分类器,以及将垃圾邮件和非垃圾邮件转换为单词出现次数的向量的测试数据集。

你需要将数据从文件data/spamTrain.matdata/spamTest.mat中加载,并分别构建训练集和测试集

要点

  • 将你读入的数据输出
  • 从数据中提取对应的X, y, Xtest, ytest
  • 确保你的数据形状依次为:(X(4000, 1899), y(4000,), Xtest(1000, 1899), ytest(1000,))
###在这里填入代码###
spam_train = loadmat('work/data/spamTrain.mat')
spam_test = loadmat('work/data/spamTest.mat')
 
print(spam_train)
print(spam_test)
 
X = spam_train['X']
Xtest = spam_test['Xtest']
y = spam_train['y'].ravel()
ytest = spam_test['ytest'].ravel()
 
X.shape, y.shape, Xtest.shape, ytest.shape
{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Nov 13 14:27:25 2011', '__version__': '1.0', '__globals__': [], 'X': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=uint8), 'y': array([[1],
       [1],
       [0],
       ...,
       [1],
       [0],
       [0]], dtype=uint8)}
{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Nov 13 14:27:39 2011', '__version__': '1.0', '__globals__': [], 'Xtest': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=uint8), 'ytest': array([[1],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0]], dtype=uint8)}





((4000, 1899), (4000,), (1000, 1899), (1000,))

每个文档已经转换为一个向量,其中1899个维对应于词汇表中的1899个单词。它们的值为二进制,表示文档中是否存在单词。

因此,训练评估是用一个分类器拟合测试数据的问题。

2.2 训练SVM进行垃圾邮件分类

你需要训练svm用于垃圾邮件分类,并分别给出训练集和测试集的准确率文章来源地址https://www.toymoban.com/news/detail-486862.html

svc = svm.SVC()
svc.fit(X, y)
print('Training accuracy = {0}%'.format(np.round(svc.score(X, y) * 100, 2)))
print('Test accuracy = {0}%'.format(np.round(svc.score(Xtest, ytest) * 100, 2)))

到了这里,关于机器学习—支持向量机的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习——支持向量机

    【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。         支持向量机(support vector machine,SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑

    2024年02月03日
    浏览(48)
  • 机器学习-6 支持向量机

    支持向量机(SVM)是一种基于 统计学习理论 的 监督学习 方法。 支持向量机在各个领域内的模式识别问题中都有广泛应用,包括人脸识别、文本分类、笔迹识别等。 支持向量机解决不同类型的问题: 当训练数据 线性可分 时,通过 硬间隔最大化 ,学习一个线性可分支持向

    2024年02月08日
    浏览(42)
  • 机器学习-支持向量机SVM

    在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。 我们要做

    2024年02月12日
    浏览(55)
  • 机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(57)
  • 【机器学习笔记】11 支持向量机

    支 持 向 量 机 是 一 类 按 监 督 学 习 ( supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane) 。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时

    2024年02月19日
    浏览(35)
  • SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(52)
  • 机器学习模型之支持向量机

    支持向量机(Support Vector Machine,SVM)是一种监督学习算法,用于分类和回归分析。它是由Cortes和Vapnik于1995年提出的。SVM在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 目录 一、SVM的基本概念: 二、SVM的

    2024年04月12日
    浏览(32)
  • 动手机器学习支持向量机+习题

    非参数化模型,当数据集规模增大时,其参数量也相应变多 希望从这无数个可以分隔两个点集的超平面中,挑选出与任意一点间隔(margin)的最小值最大的平面 对上式来说,当w和b的大小同时变为λ倍时,式中的分母||w||也变为λ倍,这时划分超平面完全不变  定义γ = yi(wx+

    2024年04月09日
    浏览(40)
  • 机器学习_8、支持向量机

    2024年01月23日
    浏览(35)
  • 机器学习算法:支持向量机(SVM)

    Solem《python计算机视觉编程》、李航《统计学习方法》、周志华《机器学习》 要理解好支持向量机需要较好的数学功底,且能不被公式以及文字绕晕,这里我们就理清楚支持向量机的大体过程。具体的数学计算推导其实已经封装好了,那么理解算法的原理也对我们将来的学习

    2024年02月03日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包