利用Excel的LINEST计算线性拟合的斜率和截距的不确定性

这篇具有很好参考价值的文章主要介绍了利用Excel的LINEST计算线性拟合的斜率和截距的不确定性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性拟合的斜率和截距的不确定性

  利用熟悉的Excel绘图功能,可以根据距离-高程散点数据拟合线性趋势线,如图1显示(河流阶地地形数据)。趋势线按如下方式插入:右击图表上的数据,添加趋势线,在图表上显示方程和 R 2 R^2 R2值。然而,趋势线函数并没有给出与线性拟合的斜率和截距相关的方差值。获得斜率和截距选定的置信区间(例如95%置信区间)对于精确测量断层变形量与滑动速率十分重要。因此,我们需要计算斜率与截距的方差值。Excel的LINESET函数提供这种统计测量。下文介绍了使用LINEST的基本步骤与原理(Morrison, 2014)。
利用Excel的LINEST计算线性拟合的斜率和截距的不确定性
图1. 拔河高度随距离的函数。利用Excel的趋势线特性对数据进行拟合;直线方程和拟合系数R2值如图所示。

Excel数组函数LINEST

  使用MS Excel的 LINEST函数 进行最小二乘计算。对于图1所示数据,应用LINEST步骤如下:

  1. 选择一个5行2列的空白范围(总共10个单元格)来存放函数的输出值;我们选择B1:C5,如图2所示。
  2. 点击公式,然后 “插入函数”。
  3. 在 “插入函数” 窗口中,类别选择 “Statistical”,选择函数 “LINEST”,然后单击确定
  4. 选择y和x数据范围;对于Const,输入TRUE(TRUE=计算非0截距);对于Stats,也选择TRUE (TRUE=返回误差统计值);单击OK
  5. 通过选择输入字段中的公式并按键盘 CTRL-SHIFT-ENTER,指定LINEST是一个数组函数。选定的10个输出单元格将填充与图2和图3中标记的匹配相关的统计信息,下文进行讨论。
    利用Excel的LINEST计算线性拟合的斜率和截距的不确定性
    图2. 按照文本中的说明,填充LINEST的函数参数,如图所示。点击OK之后,还有最后一个重要的步骤:突出显示函数调用=LINEST(B9:B1493, A9:A1493, true, true)并同时按CTRL-SHIFT-ENTER


    利用Excel的LINEST计算线性拟合的斜率和截距的不确定性
    图3. 在指定LINEST是一个数组函数之后,10个单元格B1:C5显示误差统计信息。这些统计值的含义见文本。

LINEST结果的含义

  LINEST执行最小二乘运算求解最佳拟合直线的斜率和截距(图4,Wikipedia, 2014b)。最佳线性拟合对应拟合直线和数据之间的平方和误差值最小。通常,最小二乘计算中,假设x值没有误差(图4),详细推导见文献(Montgomery and Runger, 2011; McCuen, 1985),本文仅作简短讨论。
利用Excel的LINEST计算线性拟合的斜率和截距的不确定性
图4. 因变量y的平均值是参数(斜率和截距)和变量x的线性组合。通常最小二乘算法假设数据的x值不存在误差,响应变量y的残差计算为 y i − y ^ i y_i-\widehat{y}_i yiy i,即点与直线之间的垂直距离(左图)。若x中的误差也存在,点和直线之间的最短距离是垂直距离,如右图所示。各因变量 y i y_i yi的误差是互不相关的,即每个 y i y_i yi之间不存在协方差。

  值(xi, yi)是n个数据对的集合,我们希望拟合一条线; y ˉ ≡ ( ∑ i = 1 n y i ) / n \bar{y}≡(\sum_{i=1}^n y_i )/n yˉ(i=1nyi)/n是yi的均值,并且线性拟合是 y ^ ( x ) = m ^ x + b ^ \widehat{y}(x)=\widehat{m}x+\widehat{b} y (x)=m x+b ,为了解释Excel返回的误差统计值,首先定义三个平方和: S S y y SS_{yy} SSyy, S S E SS_E SSE, 和 S S R SS_R SSR

总平方和   S S T SS_T SST= S S y y SS_{yy} SSyy= ∑ i = 1 n ( y i − y ˉ ) 2 \sum\limits_{i=1}^n(y_i-\bar{y})^2 i=1n(yiyˉ)2    (1)
误差平方和   S S E SS_E SSE ∑ i = 1 n ( y i − y ^ ) 2 \sum\limits_{i=1}^n(y_i-\widehat{y})^2 i=1n(yiy )2    (2)
回归平方和   S S R SS_R SSR S S T − S S E SS_T-SS_E SSTSSE    (3)

   S S y y SS_{yy} SSyy是数据 y i y_i yi与均值 y ^ \widehat{y} y 之间误差平方和; S S E SS_E SSE是数据 y i y_i yi和拟合值 y ^ ( x ) \widehat{y}(x) y (x)= m ^ x + b ^ \widehat{m}x+\widehat{b} m x+b 之间的误差平方和; S S R SS_R SSR是二者之差,代表总平方和中可以用线性模型值解释的部分。在最小二乘计算中,目标是找到最小化的 S S E SS_E SSE,计算过程还涉及到两个平方和公式:
S S x x SS_{xx} SSxx ∑ i = 1 n ( x i − x ˉ ) 2 \sum\limits_{i=1}^n(x_i-\bar{x})^2 i=1n(xixˉ)2   (4)
S S x y SS_{xy} SSxy ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) \sum\limits_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) i=1n(xixˉ)(y文章来源地址https://www.toymoban.com/news/detail-487176.html

到了这里,关于利用Excel的LINEST计算线性拟合的斜率和截距的不确定性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab 线性拟合、一维、多维度非线性拟合、多项式拟合

      线性拟合 我随便设定一个函数然后通过解方程计算出对应的系数 假设我的函数原型是 y=a*sin(0.1*x.^2+x)+b* squre(x+1)+c*x+d  拟合系数:   利用matlab实现非线性拟合(三维、高维、参数方程)_matlab多元非线性拟合_hyhhyh21的博客-CSDN博客 简单的一维的拟合: 思路: 将非线性-》线

    2024年02月12日
    浏览(45)
  • 线性回归(线性拟合)与非线性回归(非线性拟合)原理、推导与算法实现(一)

    关于回归和拟合,从它们的求解过程以及结果来看,两者似乎没有太大差别,事实也的确如此。从本质上说,回归属于数理统计问题,研究解释变量与响应变量之间的关系以及相关性等问题。而拟合是把平面的一系列点,用一条光滑曲线连接起来,并且让更多的点在曲线上或

    2023年04月14日
    浏览(53)
  • 线性代数的学习和整理23:用EXCEL和python 计算向量/矩阵的:内积/点积,外积/叉积

      目录 1 乘法 1.1 标量乘法(中小学乘法) 1.1.1 乘法的定义 1.1.2 乘法符合的规律 1.2 向量乘法 1.2.1 向量:有方向和大小的对象 1.2.2 向量的标量乘法 1.2.3 常见的向量乘法及结果 1.2.4 向量的其他乘法及结果 1.2.5 向量的模长(长度) 模长的计算公式 1.2.6 距离 2 向量的各种乘法 2

    2024年01月23日
    浏览(47)
  • 计算机图形学05:中点BH算法对任意斜率的直线扫描转换方法

    作者 :非妃是公主 专栏 :《计算机图形学》 博客地址 :https://blog.csdn.net/myf_666 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 专栏名称 专栏地址 软件工程 专栏——软件工程 计算机图形学 专栏——计算机图形学 操作系统 专栏——操作系统 软件测试 专

    2024年02月02日
    浏览(54)
  • 三种用python进行线性/非线性拟合的方法

    使用回归分析绘制拟合曲线是一种常见的方法,简单线性回归就是其中的一种。简单线性回归可以通过 最小二乘法 来计算回归系数。以下是一个使用简单线性回归来拟合数据的代码示例: 在该代码中,np.polyfit函数可以用来计算简单线性回归的回归系数。plot函数用来绘制拟

    2024年02月11日
    浏览(46)
  • 自留-Python:线性拟合(直线+曲线)

    使用最小二乘法的线性拟合,自留代码 读取数据  

    2024年02月12日
    浏览(40)
  • python 线性拟合图、散点图

    散点图线性拟合 散点图无截距线性拟合 (2023/08/31) 字体设置

    2024年02月14日
    浏览(37)
  • Matlab多元非线性函数拟合

    看了多篇文章,觉得没有一篇比较全,且可以参照的多元非线性函数拟合,看了多篇文章后总结以下内容,主要以示例给出,希望能帮助到大家快速上手。 beta = nlinfit(X, Y, modelfun, beta0) X为你的自变量,Y是因变量,modelfun是你用inline定义的函数名字,beta0是模型参数的初始值。

    2024年02月07日
    浏览(44)
  • RANSAC算法在Python中的实现与应用探索:线性拟合与平面拟合示例

    第一部分:RANSAC算法与其应用 在我们的日常生活和多个领域中,如机器学习,计算机视觉,模式识别等,处理数据是一个非常重要的任务。尤其是当我们需要从嘈杂的数据中获取信息或拟合模型时。有时候,数据可能包含异常值或噪声,这可能会对我们的结果产生重大影响。

    2024年02月13日
    浏览(40)
  • 利用Labview实现曲线拟合

    线性(Linear)   利用最小二乘法找到最能代表输入数据集的直线斜率和截距。 多项式(Polynomial)   通过最小二乘法找到最能代表输入数据集的多项式拟合系数。 样条插值(Spline)   返回区间个数为 n 的样条插值,结果中包含样条插值函数在内接点处的二阶导数。

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包