机器学习之逻辑回归模型

这篇具有很好参考价值的文章主要介绍了机器学习之逻辑回归模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 逻辑回归模型介绍

        逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是一种机器学习算法,属于分类和预测算法中的一种,主要用于解决二分类问题。逻辑回归通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量。根据特征属性预测购买的概率。

        逻辑回归它通过建立一个逻辑回归模型来预测输入样本属于某个类别的概率。逻辑回归模型的核心思想是使用一个称为sigmoid函数(或者称为逻辑函数)的函数来建模概率。sigmoid函数的公式为:

机器学习之逻辑回归模型

2 逻辑回归的应用场景

        逻辑回归是一种简单而高效的机器学习算法,它具有多个优势。首先,逻辑回归模型易于理解和实现,计算效率高,特别适用于大规模数据集。其次,逻辑回归提供了对结果的解释和推断能力,模型的系数可以揭示哪些特征对分类结果的影响较大或较小。此外,逻辑回归适用于高维数据,能够处理具有大量特征的问题,并捕捉到不同特征之间的关系。另外,逻辑回归能够输出概率预测,而不仅仅是分类结果,对于需要概率估计或不确定性分析的任务非常有用。最后,逻辑回归对于数据中的噪声和缺失值具有一定的鲁棒性,能够适应现实世界中的不完美数据。综上所述,逻辑回归是一种强大而实用的分类算法,在许多实际应用中被广泛采用。以下是逻辑回归常见的应用场景。

  • 金融领域:逻辑回归可用于信用评分、欺诈检测、客户流失预测等金融风险管理任务。
  • 医学领域:逻辑回归可以用于疾病诊断、患者预后评估、药物反应预测等医学决策支持任务。

  • 市场营销:逻辑回归可用于客户分类、用户行为分析、广告点击率预测等市场营销领域的任务。

  • 自然语言处理:逻辑回归可用于文本分类、情感分析、垃圾邮件过滤等自然语言处理任务。

  • 图像识别:逻辑回归可以应用于图像分类、目标检测中的二分类问题。

        逻辑回归的简单性和可解释性使其在许多实际应用中得到广泛应用。然而,对于复杂的非线性问题,逻辑回归可能不适用,此时可以考虑使用其他更复杂的模型或者结合特征工程技术来改进性能。

 3 基于pytorch实现银行欺诈人员的二分类判别

(1)数据集

在一个银行欺诈数据集上,通过15个特征,得到二分类的判别结果:是否为欺诈失信人员。建的模型依旧是线性模型。输出的值通过sigmoid进行转换,变成0~1的概率。一般认为大于0.5就是1,小于0.5就是0。

0

56.75

12.25

0

0

6

0

1.25

0

0

4

0

0

200

0

-1

0

31.67

16.165

0

0

1

0

3

0

0

9

1

0

250

730

-1

1

23.42

0.79

1

1

8

0

1.5

0

0

2

0

0

80

400

-1

1

20.42

0.835

0

0

8

0

1.585

0

0

1

1

0

0

0

-1

0

26.67

4.25

0

0

2

0

4.29

0

0

1

0

0

120

0

-1

0

34.17

1.54

0

0

2

0

1.54

0

0

1

0

0

520

50000

-1

1

36

1

0

0

0

0

2

0

0

11

1

0

0

456

-1

0

25.5

0.375

0

0

6

0

0.25

0

0

3

1

0

260

15108

-1

0

19.42

6.5

0

0

9

1

1.46

0

0

7

1

0

80

2954

-1

0

35.17

25.125

0

0

10

1

1.625

0

0

1

0

0

515

500

-1

0

32.33

7.5

0

0

11

2

1.585

0

1

0

0

2

420

0

1

1

38.58

5

0

0

2

0

13.5

0

1

0

0

0

980

0

1

最后一列为-1是失信欺诈人员,为1不是失信欺诈人员

(2)pytorch完整代码

import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch import nn
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split


def accuracy(y_pred,y_true):
    y_pred = (y_pred>0.5).type(torch.int32)
    acc = (y_pred == y_true).float().mean()
    return acc

loss_fn = nn.BCELoss()
epochs = 1000
batch = 16
lr = 0.0001

data = pd.read_csv("credit.csv",header=None)
X = data.iloc[:,:-1]
Y = data.iloc[:,-1].replace(-1,0)


X = torch.from_numpy(X.values).type(torch.float32)
Y = torch.from_numpy(Y.values).type(torch.float32)

train_x,test_x,train_y,test_y = train_test_split(X,Y)

train_ds = TensorDataset(train_x,train_y)
train_dl = DataLoader(train_ds,batch_size=batch,shuffle=True)

test_ds = TensorDataset(test_x,test_y)
test_dl = DataLoader(test_ds,batch_size=batch)

model = nn.Sequential(
                nn.Linear(15,1),
                nn.Sigmoid()
)
optim = torch.optim.Adam(model.parameters(),lr=lr)

accuracy_rate = []

for epoch in range(epochs):
    for x,y in train_dl:
        y_pred = model(x)
        y_pred = y_pred.squeeze()
        loss = loss_fn(y_pred,y)
        optim.zero_grad()
        loss.backward()
        optim.step()

    with torch.no_grad():
        # 训练集的准确率和loss
        y_pred = model(train_x)
        y_pred = y_pred.squeeze()
        epoch_accuracy  = accuracy(y_pred,train_y)
        epoch_loss  = loss_fn(y_pred,train_y).data

        accuracy_rate.append(epoch_accuracy*100)

        # 测试集的准确率和loss
        y_pred = model(test_x)
        y_pred = y_pred.squeeze()

        epoch_test_accuracy  = accuracy(y_pred,test_y)
        epoch_test_loss  = loss_fn(y_pred,test_y).data


        print('epoch:',epoch,
              'train_loss:',round(epoch_loss.item(),3),
              "train_accuracy",round(epoch_accuracy.item(),3),
              'test_loss:',round(epoch_test_loss.item(),3),
              "test_accuracy",round(epoch_test_accuracy.item(),3)
             )


accuracy_rate = np.array(accuracy_rate)
times = np.linspace(1, epochs, epochs)
plt.xlabel('epochs')
plt.ylabel('accuracy rate')
plt.plot(times, accuracy_rate)
plt.show()

(3)输出结果

epoch: 951 train_loss: 0.334 train_accuracy 0.869 test_loss: 0.346 test_accuracy 0.866
epoch: 952 train_loss: 0.334 train_accuracy 0.863 test_loss: 0.348 test_accuracy 0.866
epoch: 953 train_loss: 0.337 train_accuracy 0.867 test_loss: 0.358 test_accuracy 0.86
epoch: 954 train_loss: 0.334 train_accuracy 0.867 test_loss: 0.35 test_accuracy 0.866
epoch: 955 train_loss: 0.334 train_accuracy 0.871 test_loss: 0.346 test_accuracy 0.866
epoch: 956 train_loss: 0.333 train_accuracy 0.865 test_loss: 0.348 test_accuracy 0.872
epoch: 957 train_loss: 0.333 train_accuracy 0.871 test_loss: 0.349 test_accuracy 0.866
epoch: 958 train_loss: 0.333 train_accuracy 0.867 test_loss: 0.347 test_accuracy 0.866
epoch: 959 train_loss: 0.334 train_accuracy 0.863 test_loss: 0.352 test_accuracy 0.866
epoch: 960 train_loss: 0.333 train_accuracy 0.867 test_loss: 0.35 test_accuracy 0.878
epoch: 961 train_loss: 0.334 train_accuracy 0.873 test_loss: 0.346 test_accuracy 0.866
epoch: 962 train_loss: 0.334 train_accuracy 0.865 test_loss: 0.353 test_accuracy 0.866
epoch: 963 train_loss: 0.333 train_accuracy 0.873 test_loss: 0.35 test_accuracy 0.866
epoch: 964 train_loss: 0.334 train_accuracy 0.863 test_loss: 0.345 test_accuracy 0.872
epoch: 965 train_loss: 0.333 train_accuracy 0.861 test_loss: 0.351 test_accuracy 0.866
epoch: 966 train_loss: 0.333 train_accuracy 0.873 test_loss: 0.348 test_accuracy 0.866
epoch: 967 train_loss: 0.333 train_accuracy 0.863 test_loss: 0.348 test_accuracy 0.866
epoch: 968 train_loss: 0.333 train_accuracy 0.867 test_loss: 0.351 test_accuracy 0.866
epoch: 969 train_loss: 0.334 train_accuracy 0.869 test_loss: 0.345 test_accuracy 0.878
epoch: 970 train_loss: 0.333 train_accuracy 0.869 test_loss: 0.348 test_accuracy 0.872
epoch: 971 train_loss: 0.335 train_accuracy 0.865 test_loss: 0.344 test_accuracy 0.86
epoch: 972 train_loss: 0.333 train_accuracy 0.867 test_loss: 0.35 test_accuracy 0.86
epoch: 973 train_loss: 0.334 train_accuracy 0.871 test_loss: 0.345 test_accuracy 0.872
epoch: 974 train_loss: 0.333 train_accuracy 0.865 test_loss: 0.351 test_accuracy 0.866
epoch: 975 train_loss: 0.333 train_accuracy 0.873 test_loss: 0.351 test_accuracy 0.86
epoch: 976 train_loss: 0.333 train_accuracy 0.869 test_loss: 0.346 test_accuracy 0.878
epoch: 977 train_loss: 0.333 train_accuracy 0.863 test_loss: 0.351 test_accuracy 0.866
epoch: 978 train_loss: 0.332 train_accuracy 0.865 test_loss: 0.351 test_accuracy 0.866
epoch: 979 train_loss: 0.332 train_accuracy 0.871 test_loss: 0.349 test_accuracy 0.866
epoch: 980 train_loss: 0.333 train_accuracy 0.865 test_loss: 0.345 test_accuracy 0.872
epoch: 981 train_loss: 0.332 train_accuracy 0.867 test_loss: 0.348 test_accuracy 0.872
epoch: 982 train_loss: 0.332 train_accuracy 0.863 test_loss: 0.349 test_accuracy 0.872
epoch: 983 train_loss: 0.333 train_accuracy 0.865 test_loss: 0.353 test_accuracy 0.866
epoch: 984 train_loss: 0.332 train_accuracy 0.865 test_loss: 0.35 test_accuracy 0.872
epoch: 985 train_loss: 0.333 train_accuracy 0.867 test_loss: 0.353 test_accuracy 0.86
epoch: 986 train_loss: 0.333 train_accuracy 0.871 test_loss: 0.345 test_accuracy 0.866
epoch: 987 train_loss: 0.331 train_accuracy 0.865 test_loss: 0.349 test_accuracy 0.872
epoch: 988 train_loss: 0.332 train_accuracy 0.869 test_loss: 0.345 test_accuracy 0.872
epoch: 989 train_loss: 0.332 train_accuracy 0.865 test_loss: 0.353 test_accuracy 0.866
epoch: 990 train_loss: 0.331 train_accuracy 0.865 test_loss: 0.348 test_accuracy 0.872
epoch: 991 train_loss: 0.333 train_accuracy 0.875 test_loss: 0.344 test_accuracy 0.86
epoch: 992 train_loss: 0.332 train_accuracy 0.865 test_loss: 0.351 test_accuracy 0.866
epoch: 993 train_loss: 0.331 train_accuracy 0.869 test_loss: 0.348 test_accuracy 0.872
epoch: 994 train_loss: 0.331 train_accuracy 0.871 test_loss: 0.348 test_accuracy 0.872
epoch: 995 train_loss: 0.331 train_accuracy 0.865 test_loss: 0.347 test_accuracy 0.872
epoch: 996 train_loss: 0.331 train_accuracy 0.865 test_loss: 0.347 test_accuracy 0.872
epoch: 997 train_loss: 0.331 train_accuracy 0.867 test_loss: 0.35 test_accuracy 0.872
epoch: 998 train_loss: 0.331 train_accuracy 0.867 test_loss: 0.349 test_accuracy 0.872
epoch: 999 train_loss: 0.331 train_accuracy 0.865 test_loss: 0.348 test_accuracy 0.872

机器学习之逻辑回归模型

 4 完整数据集及代码下载

完整代码及数据集:代码和数据集文章来源地址https://www.toymoban.com/news/detail-487370.html

到了这里,关于机器学习之逻辑回归模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】

    目录 前言 一、什么是线性回归 二、什么是逻辑回归 三、基于Python 和 Scikit-learn 库实现线性回归 示例代码:  使用线性回归来预测房价: 四、基于Python 和 Scikit-learn 库实现逻辑回归 五、总结  线性回归的优缺点总结: 逻辑回归(Logistic Regression)是一种常用的分类算法,具有

    2024年04月13日
    浏览(44)
  • 初识人工智能,一文读懂机器学习之逻辑回归知识文集(1)

    🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论⭐收藏 🔎 人工智能领域知识 🔎 链接 专栏 人工智能专业知识学习一 人工智能专栏 人

    2024年01月23日
    浏览(63)
  • 机器学习之常用的回归预测模型

    本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。 转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ 线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数 (可选择是否设置截距)的线性模型,以最小化真实值和预

    2024年04月08日
    浏览(41)
  • 【AI】机器学习——线性模型(逻辑斯蒂回归)

    逻辑回归输出的是实例属于每个类别的似然概率,似然概率最大的类别就是分类结果 在一定条件下,逻辑回归模型与朴素贝叶斯分类器等价 多分类问题可以通过多次二分类或者Softmax回归解决 3. 线性回归模型 4.4 线性分类模型——感知器 目标:用判别模型解决分类问题 4.1.

    2024年02月09日
    浏览(44)
  • 【机器学习300问】15、什么是逻辑回归模型?

            逻辑回归(Logistic Regression)是一种广义线性回归分析模型,尤其适用于解决 二分类问题 (输出为两个类别)。 邮件过滤 :判断一封电子邮件是否为垃圾邮件。结果为垃圾邮件(1)或非垃圾邮件(0); 医疗诊断 :判断病人是否患有某种疾病,如癌症。结果为患

    2024年01月22日
    浏览(47)
  • 机器学习:逻辑回归模型算法原理(附案例实战)

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 订阅专栏案

    2024年01月20日
    浏览(48)
  • 【机器学习300问】16、逻辑回归模型实现分类的原理?

            在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                              【机器学习300问】15、什么是逻辑回归模型?     

    2024年01月25日
    浏览(55)
  • 把ChatGPT调教成机器学习专家,以逻辑回归模型的学习为例

    大家好我是章北海mlpy 看到一个蛮有意思的项目,可以把ChatGPT调教成导师 https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor 可以根据你选择的学习难度、学习方向帮你制定学习计划 我用“如何学习逻辑回归模型”测试了一下,感觉还不错。 完整聊天记录如下 Zhang: { “ai_tutor”:{ \\\"作者

    2024年02月04日
    浏览(92)
  • 【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(59)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包