易观:今年以来,随着人工智能技术不断实现突破迭代,生成式AI的话题多次成为热门,而人工智能内容生成(AIGC)的产业发展、市场反应与相应监管要求也受到了广泛关注。为了更好地探寻其在各行业落地应用的可行性和发展趋势,易观对AIGC产业进行了探索并将发布AIGC产业研究报告系列。
报告以内容生成模态作为视角,涵盖了AIGC在语言生成、图像生成、音频生成、视频生成、三维生成、分子发现与电路设计(图生成)等领域的技术发展、关键能力、典型应用场景,我国AIGC产业在商业化落地过程所面临的挑战和对前景的展望。希望通过梳理和把握AIGC产业的发展脉络,为各领域的应用开发者和使用者提供参考。
在本期音频生成篇中,报告从音频技术的发展历程展开,回顾了拼接合成、参数合成、端到端合成三个关键阶段,分析了生成速度、语音质量、控制能力等模型关键能力的应用表现、国内外市场上的主流产品,以及在进行商业化落地时,来自数据、性能、需求三方面的挑战和解决思路。
定义
音频生成是指根据所输入的数据合成对应的声音波形的过程,主要包括根据文本合成语音(text-to-speech),进行不同语言之间的语音转换,根据视觉内容(图像或视频)进行语音描述,以及生成旋律、音乐等。
细分类型和主要应用领域
组成声音的结构包括音素、音节、音位、语素等,音频生成能够对这些基本单位进行预测和组合,通过频谱逼近或波形逼近的合成策略来实现音频的生成。
按照输入数据类型的不同,音频生成可以分为根据文字信息、音频信息、肌肉震动、视觉内容等数据进行的声音合成。按照场景的不同,音频生成又可以分为非流式语音生成和流式语音生成。其中,非流式语音可进行一次性输入和输出,强调对整体语音合成速度的把握,适合应用在语音输出为主的相关场景;流式语音则可以对输入数据进行分段合成,响应时间短,应用在语音交互相关场景中,能够带来更好的体验。
决定音频生成效果的关键因素主要包括生成速度、分词的准确程度、合成语音的自然度,以及语音是否具有多样化的韵律和表现力等。音频生成在智能客服、语音导航、同声传译、音乐和影视制作、有声书阅读等场景均有广阔的应用空间。另外,近年来语音生成设备在医疗领域也显现出了巨大的应用潜力,例如帮助语言障碍者与他人进行交流,方便视觉障碍者有效获取文本和图片信息等。
技术发展的关键阶段
音频生成早期是基于物理机理,通过机械装置、电子合成器等实现对人声的模拟。随着计算机技术的发展,音频生成逐渐形成了以“文本分析-声学模型-声码器”为基本结构的语音合成方法。基于对这个结构部分模块的替代或优化,音频生成的关键技术大致经历了拼接合成阶段、参数合成阶段、端到端合成阶段三个时期。目前,音频生成作为一种比较成熟的技术,已经具备产业化应用的能力。
● 拼接合成阶段:
波形拼接法是通过对语句的音素、音节、单词进行特征标注和切分后,在事先录制的语音库中查找基本单位并将音素片段拼接合成语音。波形拼接法的优点是基于真人录制的语音音质较好,听觉上比较真实,但拼接效果依赖于语音库的数据量,需要录制大量的语音才能保证覆盖率,且字词的衔接过渡较为生硬。
● 参数合成阶段:文章来源:https://www.toymoban.com/news/detail-487863.html
参数合成法是对已有声音数据的声学特征参数构建统计模型,训练好的模型对输入数据进行分词、断句文章来源地址https://www.toymoban.com/news/detail-487863.html
到了这里,关于AIGC产业研究报告 2023——音频生成篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!