Python采集天气数据,做可视化分析【附源码】

这篇具有很好参考价值的文章主要介绍了Python采集天气数据,做可视化分析【附源码】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

知识点:

  • 动态数据抓包
  • requests发送请求
  • 结构化+非结构化数据解析

开发环境:

  • python 3.8 运行代码
  • pycharm 2021.2 辅助敲代码
  • requests

如果安装python第三方模块:

  1. win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests)回车
  2. 在pycharm中点击Terminal(终端) 输入安装命令

代码实现:

  1. 发送请求
  2. 获取数据
  3. 解析数据
  4. 保存数据

Python采集天气数据,做可视化分析【附源码】

采集天气数据代码

导入模块

源码.点击领取即可

import requests     # 第三方模块 提前安装  发送请求 (Python里面浏览器)  爆红是因为你没有安装模块
# 如果安装了 但还是爆红是因为什么呢? 解释器在pycharm里面配置的不对
import parsel
import csv
# 翻译插件
with open('天气.csv', mode='a', encoding='utf-8', newline='') as f:
    csv_writer = csv.writer(f)
    csv_writer.writerow(["日期", "最高温度", "最低温度", "天气", "风向", "城市"])
city_list = [54511, 58362, 59287, 59493]
for city in city_list:
    for year in range(2011, 2022):
        for month in range(1, 13):
            url = f'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D={city}&areaInfo%5BareaType%5D=2&date%5Byear%5D={year}&date%5Bmonth%5D={month}'

1. 发送请求

response = requests.get(url=url)
# <Response [200]>: 请求成功

2. 获取数据

# json数据传输格式
json_data = response.json()
# 字典类型数据

3.解析数据

 # 结构化数据解析
 html_data = json_data['data']
 selector = parsel.Selector(html_data)
 # 正则 css xpath json字典数据解析
 tr_list = selector.css('.history-table tr')
 # tr_list[1:] 从列表的第二个元素开始取
 for tr in tr_list[1:]:
    # <X>fhwaeuifhwiuf</X>
    td = tr.css('td::text').getall()
    if td[2] == '°':
        td[2] = td[1]
    if city == 54511:
        td.append("北京")
    elif city == 58362:
        td.append("上海")
    elif city == 59287:
        td.append("广州")
    elif city == 59493:
        td.append("深圳")
    print(td)
    # 文件名 写入方式 追加写入  编码方式 utf-8  数据空行
    with open('天气.csv', mode='a', encoding='utf-8', newline='') as f:
        csv_writer = csv.writer(f)
        csv_writer.writerow(td)

数据分析代码

导入包

源码.点击领取即可

import pandas as pd
import datetime
from pyecharts import options as opts
from pyecharts.charts import *
from pyecharts.commons.utils import JsCode

读入数据

data = pd.read_csv('天气.csv')
data

数据预览

data.sample(5)

data.info()

分割日期/星期

data[['日期','星期']] = data['日期'].str.split(' ',expand=True,n=1)
data

去除多余字符

data[['最高温度','最低温度']] = data[['最高温度','最低温度']].apply(lambda x: x.str.replace('°',''))
data.head()

计算下雪天气

data.loc[data['天气'].str.contains('雪'),'下雪吗']='是'
data.fillna('否',inplace=True)

分割日期时间

data['日期'] = pd.to_datetime(data['日期'])
data[['最高温度','最低温度']] = data[['最高温度','最低温度']].astype('int')

data['年份'] = data['日期'].dt.year
data['月份'] = data['日期'].dt.month
data['日'] = data['日期'].dt.day
# 预览
data.sample(5)

各城市初雪的时间

s_data = data[data['下雪吗']=='是']
s_data[(s_data['月份']>=9)].groupby('年份').first().reset_index()

各城市下雪天气分布

s_data.groupby(['城市','年份'])['日期'].count().to_frame('下雪天数').reset_index()

做透视表

data_bj = data[(data['年份'] == 2021) & (data['城市'] == '北京')]
data_bj = data_bj.groupby(['月份','天气'], as_index=False)['日期'].count()

data_pivot =  pd.pivot(data_bj,
                values='日期',
                index='月份',
                columns='天气')
data_pivot = data_pivot.astype('float')
# 按照 索引年月倒序排序
data_pivot.sort_index(ascending=False,inplace=True)      
data_pivot
python学习交流Q群:770699889 ### 源码领取

北上广深2021年10月份天气热力图分布

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax.xaxis.set_ticks_position('top') 
plt.title('北京最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_gz= data[(data['年份'] == 2021) & (data['城市'] == '广州')]
data_gz = data_gz.groupby(['月份','天气'], as_index=False)['日期'].count()
data_sz= data[(data['年份'] == 2021) & (data['城市'] == '深圳')]
data_sz = data_sz.groupby(['月份','天气'], as_index=False)['日期'].count()
data_sh= data[(data['年份'] == 2021) & (data['城市'] == '上海')]
data_sh = data_sh.groupby(['月份','天气'], as_index=False)['日期'].count()

python学习交流Q群:770699889 ### 源码领取
data_pivot_sz =  pd.pivot(data_sz,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_sz = data_pivot_sz.astype('float')
# 按照 索引年月倒序排序
data_pivot_sz.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_sz, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('深圳最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_pivot_gz =  pd.pivot(data_gz,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_gz = data_pivot_gz.astype('float')
# 按照 索引年月倒序排序
data_pivot_gz.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_gz, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('广州最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()   
data_pivot_sh =  pd.pivot(data_sh,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_sh = data_pivot_sh.astype('float')
# 按照 索引年月倒序排序
data_pivot_sh.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_sh, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('上海最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_bj = data[(data['城市']=='北京') & (data['年份'] == 2021)]
data_bj['日期'] = pd.to_datetime(data_bj.日期,format="%Y年%m月%d日")
data_bj = data_bj.sort_values(by='日期',ascending=True)

北京2021年每日最高最低温度变化

python学习交流Q群:770699889 ### 源码领取
color0 = ['#FF76A2','#24ACE6']
color_js0 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFC0CB'}, {offset: 1, color: '#ed1941'}], false)"""
color_js1 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#009ad6'}], false)"""

tl = Timeline()
for i in range(0,len(data_bj)):
    coordy_high = list(data_bj['最高温度'])[i]
    coordx = list(data_bj['日期'])[i]
    coordy_low = list(data_bj['最低温度'])[i]
    x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10)
    y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3
    y_min = int(min(list(data_bj['最低温度'])[0:i+1]))-3
    title_date = list(data_bj['日期'])[i].strftime('%Y-%m-%d')
    c = (
        Line(
            init_opts=opts.InitOpts(
            theme='dark',
            #设置动画
            animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing="elasticOut"),
            #设置宽度、高度
            width='1500px',
            height='900px', )
        )
        .add_xaxis(list(data_bj['日期'])[0:i])
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False,
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js0)
                   }
               },
            itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: '#ed1941'
            }, {
                offset: 1,
                color: '#009ad6'
            }], false)"""
                ),
                "barBorderRadius": [45, 45, 45, 45],
                "shadowColor": "rgb(0, 160, 221)",
            }
        },

        )
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False,
#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),
            itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js1)
                   }
               },
        )
        .set_global_opts(
            title_opts=opts.TitleOpts("北京2021年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]),
            xaxis_opts=opts.AxisOpts(type_="time",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
            yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
        )
    )
    tl.add(c, "{}".format(list(data_bj['日期'])[i]))
    tl.add_schema(
        axis_type='time',
        play_interval=100,  # 表示播放的速度
        pos_bottom="-29px",
        is_loop_play=False, # 是否循环播放
        width="780px",
        pos_left='30px',
        is_auto_play=True,  # 是否自动播放。
        is_timeline_show=False)
tl.render_notebook()      
data_10 = data[(data['年份'] == 2021) & ( data['月份'] == 10)]
data_10.head()

北上广深10月份每日最高气温变化

# 背景色
background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)

# 线条样式
linestyle_dic = { 'normal': {
                    'width': 4,  
                    'shadowColor': '#696969', 
                    'shadowBlur': 10,  
                    'shadowOffsetY': 10,  
                    'shadowOffsetX': 10,  
                    }
                }
    
timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                            width='980px',height='600px'))


bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10['城市'] == '北京']['日'].tolist()
for d_time in range(len(x_data)):
    bj.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='北京')]["最高温度"].values.tolist()[0])
    gz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='广州')]["最高温度"].values.tolist()[0])
    sh.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='上海')]["最高温度"].values.tolist()[0])
    sz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='深圳')]["最高温度"].values.tolist()[0])
    
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                     width='980px',height='600px'))
        .add_xaxis(
            x_data,
                  )
        
        .add_yaxis(
            '北京',
            bj,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
  
        .add_yaxis(
            '广州',
            gz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
 
        .add_yaxis(
            '上海',
            sh,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
 
        .add_yaxis(
            '深圳',
            sz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
        
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='北上广深10月份最高气温变化趋势',
                pos_left='center',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(color='#DC143C', font_size=20)),
            
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
            xaxis_opts=opts.AxisOpts(
#                 axislabel_opts=opts.LabelOpts(font_size=14, color='red'),
#                 axisline_opts=opts.AxisLineOpts(is_show=True,
#                 linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
                is_show = False
            ),
                  
            yaxis_opts=opts.AxisOpts(
                name='最高气温',            
                is_scale=True,
#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,
                max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#5470c6'),
                axislabel_opts=opts.LabelOpts(font_size=13,color='#5470c6'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#5470c6'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',
                                        legend_icon='roundRect',orient = 'vertical'),
        ))
    
    timeline.add(line, '{}'.format(x_data[d_time]))

timeline.add_schema(
    play_interval=1000,          # 轮播速度
    is_timeline_show=True,      # 是否显示 timeline 组件
    is_auto_play=True,          # 是否自动播放
    pos_left="0",
    pos_right="0"
)
timeline.render_notebook()

效果展示(部分)

源码.点击领取即可

Python采集天气数据,做可视化分析【附源码】

Python采集天气数据,做可视化分析【附源码】

Python采集天气数据,做可视化分析【附源码】

Python采集天气数据,做可视化分析【附源码】

Python采集天气数据,做可视化分析【附源码】

Python采集天气数据,做可视化分析【附源码】

最后

今天的分享到这里就结束了

给大家推荐一些Python视频教程,希望对大家有所帮助:

Python零基础教学合集

对文章有问题的,或者有其他关于python的问题,可以在评论区留言或者私信我哦
觉得我分享的文章不错的话,可以关注一下我,或者给文章点赞(/≧▽≦)/

Python采集天气数据,做可视化分析【附源码】文章来源地址https://www.toymoban.com/news/detail-488685.html

到了这里,关于Python采集天气数据,做可视化分析【附源码】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python天气数据可视化分析

    网:tianqihoubao 对深圳近几月的天气进行分析可视化    get函数 用于get网页数据并进行分析讲需要的天气数据进行导出  数据都在tr便签里所以只提取tr标签里的数据  调用  提取深圳近三个月的数据,并用pandas库中的concat将三个get完的数据进行整合 表格展示 导出的表格数据

    2024年02月11日
    浏览(42)
  • 毕业设计:基于Python网易云音乐数据采集分析可视化系统+分析大屏 Flask框架 (附源码)建议收藏

    [毕业设计]2023-2024年最新最全计算机专业毕设选题推荐汇总 感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。 随着互联网技术的发展,音乐成为了人们生活中不可或缺的一部分,而网易云音乐作为国内

    2024年02月01日
    浏览(53)
  • python爬取天气数据并做可视化分析

    历史天气数据schema { ‘当日信息’:\\\'2023-01-01 星期日\\\', \\\'最高气温\\\': 8℃\\\'\\\', \\\'最低气温\\\': \\\'5℃\\\', ‘天气’: \\\'多云\\\', \\\'风向信息\\\':\\\'北风 3级\\\' } 1.导入库 2.对程序进行伪装 3.抓取天气数据 在数据存储前,对数据进行处理,便于后期的数据分析。将上面的“当天信息”字段拆分为“日期”

    2024年02月04日
    浏览(41)
  • 基于Python的网络爬虫爬取天气数据可视化分析

    目录 摘 要 1 一、 设计目的 2 二、 设计任务内容 3 三、 常用爬虫框架比较 3 四、网络爬虫程序总体设计 3 四、 网络爬虫程序详细设计 4 4.1设计环境和目标分析 4 4.2爬虫运行流程分析 5 爬虫基本流程 5 发起请求 5 获取响应内容 5 解析数据 5 保存数据 5 Request和Response 5 Request 5

    2024年02月08日
    浏览(49)
  • 【Python】实现爬虫(完整版),爬取天气数据并进行可视化分析

    ✌️✌️✌️大家好呀,你们的作业侠又轰轰轰的出现了,这次给大家带来的是python爬虫,实现的是爬取某城市的天气信息并使用matplotlib进行图形化分析✌️✌️✌️ 要源码可私聊我。 大家的关注就是我作业侠源源不断的动力,大家喜欢的话,期待三连呀😊😊😊 往期源码

    2024年02月05日
    浏览(46)
  • 基于python天气数据的预测分析及可视化系统 毕业设计开题报告

     博主介绍 :《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、PPT、论文模版

    2024年02月04日
    浏览(59)
  • 用Python采集电商平台商品数据进行可视化分析

    前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 环境使用: python 3.8 解释器 pycharm 编辑器 模块使用: 第三方模块 需要安装 requests — 发送 HTTP请求 内置模块 不需要安装 csv — 数据处理中经常会用到的一种文件格式 第三方模块安装: win + R 输入cmd 输入安装命令 pip install 模块名 (如果你

    2024年02月17日
    浏览(54)
  • Python 数据采集、清洗、整理、分析以及可视化实战

    大概可以分为下面这几个步骤: 数据采集; 原始数据完整性检查; 数据清洗、整理; 从不同角度对数据进行分析; 数据可视化; 总结; 主要使用 Python 来进行分析: 数据采集: 主要涉及的 python 库包括 requests,BeautifulSoup,csv,以及一些其他常用工具。 数据完整性检查: 包

    2024年02月09日
    浏览(54)
  • Python爬虫:批量采集58同城数据,进行可视化分析!

    哈喽大家好,今天我们来获取一下某个生活平台网站数据,进行可视化分析。 采集58的数据可以使用Python的requests库和beautifulsoup库,数据可视化分析可以使用matplotlib库和seaborn库。下面是一个简单的例子: 1、首先导入需要使用的模块   2、设置请求头,模拟浏览器请求。  

    2024年02月06日
    浏览(47)
  • 简单的用Python采集招聘数据内容,并做可视化分析!

    哈喽大家好,现在刚毕业,很多小伙伴因为找不到工作或者找了很多也不喜欢,再有懒一点的,太热了根本不想出门到处找。 所以今天给大家分享使用Python批量采集招聘数据,进行可视化分析,轻松找到心仪工作! 话不多说,我们直接开始~ 准备工作 软件工具 Python 3.8 Pych

    2024年02月15日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包