OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

这篇具有很好参考价值的文章主要介绍了OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

1. 形态学

OpenCV形态学是一种基于OpenCV库的数字图像处理技术,主要用于处理图像的形状、结构和空间关系。它包括一系列图像处理工具和算法,包括膨胀、腐蚀、开运算、闭运算、形态学梯度、顶帽、黑帽等。

通过对图像进行形态学操作可以实现一些重要的图像处理任务,比如去除噪声、分离图像中的对象、填充图像中的空洞、改变图像的形状、寻找图像中的轮廓等等。在OpenCV中,形态学操作通常采用二值图像进行处理,它可以通过C++或Python编程实现具体的形态学算法

2. 常用接口

在对图片进行相关操作之前,我们首先要先将彩色图片转变为灰度图像,方便图像的二值化。

2.1 cvtColor()

转换颜色通道的API
dst = cv2.cvtColor( img , cv2.COLOR_BGR2GRAY)
第二个参数为BGR图像转到灰度图像。

2.2 图像二值化

threshod()

该API能将灰度图像按照设定的阈值,将图像二值化。

ret ,dst = cv2.threshod( img, thresh, maxVal, type)
img:图像,最好是灰度图。
thresh:阈值(低于阈值为0,高于阈值的部分为maxVal)
maxVal:超过阈值的替换成maxVal
返回值有两个,第一个是使用的阈值,第二个是输出后的图像

type:

  • CV2.THRESH_BINARY
  • CV2.THRESH_BINARY_INV
  • CV2.THRESH_TRUNC
  • CV2.THRESH_TOZERO
  • CV2.THRESH_TOZERO_INV

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
上图显示了不同参数下,二值化的不同图像,第一个图为原始图像,后面的为不同的规则。


下列示例将一个灰度图分别以阈值100,180进行二值化。

import cv2
import numpy as np

img = cv2.imread('./image/lena_small.png')
# 将图片转换为灰度图
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 将阈值设为100,180
ret, img2 = cv2.threshold(img1, 100, 255, cv2.THRESH_BINARY)
ret1, img3 = cv2.threshold(img1, 180, 255, cv2.THRESH_BINARY)

cv2.imshow('orgin_img', img1)
cv2.imshow('img_100', img2)
cv2.imshow('img_180', img3)

cv2.waitKey(0)


OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

自适应阈值二值化

有时候由于光照不均匀以及阴影的存在,有可能导致阴影部分的白色会被二值化为黑色,因此只有一个阈值的缺陷就暴露了出来。
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
用全局二值化,将阈值设置为180时,由于阴影的存在,会将阴影部分黑化,导致显示不完全。因次提出了自适应二值化的方法。

adaptiveThreshod()

dst = cv2.adaptiveThreshod(img, maxVal, adaptiveMethod, Type, blockSize, C)
img:需要二值化的图像(最好是灰度图
maxVal:超过阈值的像素设置成maxVal
adaptiveMethod:见下图
Type:为全局二值化的Type
blockSize:临近区域的大小,填奇数
C:常量,从计算的平均值或加权平均值中减去,一般为0

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

2.3 腐蚀与膨胀

腐蚀就是将一个图片关键部分“缩小“,膨胀将一个图形的关键部分放大。卷积核通常为全1的奇数矩阵。

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

erode()

原始图像中的一个像素无论是1还是0,只有当内核中的所用像素都是1时,结果才是1,否则结果就是0
dst = cv2.erode(img, kenel, iterations = 1)
img:要腐蚀的图像
kenel:卷积核,全1的矩阵
iterations:执行次数,默认为1次

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

getStructuringElement()

便捷API,帮助我们获得指定大小的卷积核
kernel = cv2.getStructuringElement(type, Size)
Type:MORPH_RECT(矩形);MORPH_ELLIPSE(椭圆形部分为1);MORPH_CROSS(十字架部分为1)
Size:(3, 3);(5, 5)…

import cv2
import numpy as np

img = cv2.imread('./image/j.png')

# 自己创建5*5的卷积核
# kernel = np.ones((5, 5), np.uint8)
# 获得卷积核
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
dst = cv2.erode(img, kernel)

cv2.imshow('orgin_img', img)
cv2.imshow('dst', dst)

cv2.waitKey(0)

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

dilate()

只要锚点非0,那么结果非0,卷积核越大,膨胀越大
dst = cv2.dilate(img, kernel, iterations = 1)
img:要膨胀的图像
kenel:卷积核,全1的矩阵
iterations:执行次数,默认为1次

import cv2
import numpy as np

img = cv2.imread('./image/j.png')

# 自己创建5*5的卷积核
# kernel = np.ones((5, 5), np.uint8)
# 获得卷积核
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# # 腐蚀
# dst = cv2.erode(img, kernel)

# 膨胀
dst = cv2.dilate(img, kernel)

cv2.imshow('orgin_img', img)
cv2.imshow('dst', dst)

cv2.waitKey(0)

OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

2.4开、闭、梯度、顶帽、黑帽运算

开运算:腐蚀+膨胀
闭运算:膨胀+腐蚀
梯度:原图-腐蚀
顶帽:原图-开运算
黑帽:原图-闭运算

morphologyEx()

dst = cv2.morphologyEx(img, Type, kernel)
img:进行操作的原图
kernel:噪点大,用大核

Type:

  • MORPH_OPEN/MORPH_CLOSE(开闭运算)
  • MORPH_GRADIENT(梯度运算)
  • MORPH_TOPHAT/MORPH_BLACKHAT(顶黑帽)

开运算:去除文字外的小噪点
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

闭运算:去除文字内的小噪点
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

梯度运算:获得文字的轮廓
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
顶帽:得到大图像外的小图形
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算

黑帽:得到大图形内的小图形
OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
以上就是形态学相关API的使用。文章来源地址https://www.toymoban.com/news/detail-488863.html

到了这里,关于OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV基本图像处理操作(一)——图像基本操作与形态学操作

    图像显示 转hsv图像 颜色表示为三个组成部分:色调(Hue)、饱和度(Saturation)和亮度(Value)。常用于图像处理中,因为它允许调整颜色的感知特性,如色彩和亮度,这些在RGB颜色模型中不那么直观。 HSV模型特别适用于任务如图像分割和对象追踪,因为它可以更好地处理光

    2024年04月22日
    浏览(89)
  • (数字图像处理MATLAB+Python)第九章图像形态学运算-第三节:二值图像的形态学处理

    形态滤波 :是一种在数字图像处理中常用的图像处理技术,用于改善图像的质量、提取图像的特定特征或去除图像中的噪声。形态滤波主要基于形态学运算,通过结构元素(也称为模板)对图像进行局部区域的操作,从而改变图像的形状和结构。选择不同形状(如各向同性的

    2024年02月08日
    浏览(67)
  • python数字图像处理基础(四)——图像平滑处理、形态学操作、图像梯度

    让有噪音点(图像上显得突兀的像素点)的图像变得更加自然顺眼 1.均值滤波 blur() 根据核的大小(rowcol),每个像素值就等于以此像素为中心的周围rowcol个像素的平均值。 核大一点,显然越平滑、模糊。 result = cv2.blur(img, (15, 15)) 2.方框滤波 boxFilter() normalize=true的时候,效果同

    2024年01月18日
    浏览(82)
  • 基于图像形态学处理的目标几何形状检测算法matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程     matlab2022a        目标几何形状检测是计算机视觉领域中的重要任务之一,旨在从图像中自动识别和定位不同的几何形状,例如矩形、圆形、三角形等。这些形状检测在许

    2024年02月14日
    浏览(60)
  • 我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

    例如,设定阈值为127,然后:  将图像内所有像素值大于 127 的像素点的值设为 255。  将图像内所有像素值小于或等于 127 的像素点的值设为 0。 cv2.threshold() 和 cv2.adaptiveThreshold() 是 OpenCV 中用于实现阈值处理的两个函数,它们之间有以下区别: 1.1.1. cv2.threshold(): 这个函数

    2024年02月05日
    浏览(60)
  • 使用opencv c++完成图像中水果分割(分水岭、形态学操作、通道处理)单独标记每个水果

    2023.4.16日更新 1. 利用一阶矩增加了草莓等水果的质心绘制。 2. 绘制出了生长方向。 原为本人机器人视觉作业。参考文章http://t.csdn.cn/eQ0qp(目测是上一届的学长) 要求:在网络上寻找水果重叠在一起的图片、经过一系列图像处理,完成每个水果的分割,并单独标记出来。 导

    2024年02月04日
    浏览(86)
  • 数字图像处理之matlab实验(五):形态学图像处理

    常见的形态学处理包括腐蚀、膨胀、开运算、闭运算。不同的操作有不同的作用,同样的操作在不同类型的图片上也有不同效果,具体效果如下表格所示。要求熟练掌握对二值图像的形态学处理。 不同操作对不同类型图像处理效果 一、对二值图像进行处理 1、结构元素 在开

    2024年02月04日
    浏览(65)
  • 第九章 形态学图像处理

    图像形态学也叫数学形态学,是指一系列处理图像 形状特征 的图像处理技术,是一门建立在格伦和拓扑学基础上的图像分析学科,是数学形态学图像处理的基本理论。其基本思想是利用一种特殊的 结构元 来测量或提取输入图像中相应的形状或特征,以便进一步进行图像分析

    2024年02月09日
    浏览(43)
  • 形态学图像处理和图像分割MATLAB实验

    一、实验目的 理解腐蚀和膨胀的原理,掌握开运算、闭运算及形态学的边界提取。 掌握孤立点检测、线检测和边缘检测的方法。 掌握全局阈值处理的方法。 二、实验内容 1. 开运算和闭运算实验。 图1(a)显示了一幅被噪声图像污染的指纹图像,图1(b)给出了结构元,请自编程

    2024年02月06日
    浏览(51)
  • 形态学运算与仿真:图像处理中形态学操作的简单解释

    形态学是图像处理领域的一个分支,主要用于描述和处理图像中的形状和结构。形态学可以用于提取图像中的特征、消除噪声、改变图像的形状等。其中形态学的核心操作是形态学运算。 形态学运算是一种基于形状的图像处理技术,它是通过结构元素与图像进行特定运算的方

    2024年02月04日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包