文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题

这篇具有很好参考价值的文章主要介绍了文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

七、描述一个运行时间为O(nlgn)的算法,给定n个整数的集合S和另一个整数,该算法能确定 S中是否存在两个其和刚好为工的元素。

文心一言:

这里是一个运行时间为O(nlgn)的算法,可以用来确定集合 S 中是否存在两个元素,它们的和恰好为工。

首先,我们需要将集合 S 中的元素按升序排序,这样我们可以先找到两个元素 u 和 v,使得 u + v = w。

接下来,我们需要将这两个元素从集合 S 中删除,这样我们就可以得到集合 S¹,其中 S¹ 包含了原来集合 S 中所有元素和它们之间的和。

最后,我们可以重复以上步骤,直到集合 S 中的所有元素都被找到,或者集合 S 中的元素个数减少到一个非常小的数值。

具体来说,我们可以使用两个指针 i 和 j,分别从 1 和 n 开始遍历集合 S。对于每个元素 u 和 v,我们需要比较它们的和 w,然后将 u 和 v 分别向前移动一位。

最后,当 i 或 j 到达 n 或 0 时,表示集合 S 中的所有元素都已经被找到了。

文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题

chatgpt:

一个运行时间为O(nlgn)的算法是先对集合S进行排序,然后使用双指针算法从集合的两端开始向中间扫描。初始化左右指针分别指向S的第一个和最后一个元素。如果这两个元素的和大于给定的工整数,将右指针左移;如果和小于目标整数,则将左指针右移。重复这个过程直到找到两个元素之和等于给定的目标整数或者确定不存在这样的两个元素。

由于排序需要O(nlgn)的时间,而双指针扫描需要O(n)的时间,因此总时间复杂度为O(nlgn)。

文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题

一、假设f(n)与g(n)都是渐近非负函数。使用O记号的基本定义来证明max(f(n),g(n))=O(f(n)+g(n))。

文心一言:

文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题

chatgpt:

根据定义,如果max(f(n), g(n))=O(f(n)+g(n)),则存在正常数c和n0,使得对于所有的n≥n0,都有max(f(n), g(n))≤c(f(n)+g(n))。

考虑两种情况:

  1. 当f(n)≥g(n)时,有max(f(n), g(n))=f(n),因此要证明max(f(n), g(n))=O(f(n)+g(n)),只需要证明f(n)=O(f(n)+g(n))。这是显然成立的,因为f(n)≤f(n)+g(n)。

  2. 当g(n)≥f(n)时,有max(f(n), g(n))=g(n),因此要证明max(f(n), g(n))=O(f(n)+g(n)),只需要证明g(n)=O(f(n)+g(n))。同样地,这是显然成立的,因为g(n)≤f(n)+g(n)。

综上所述,无论f(n)≥g(n)还是g(n)≥f(n),都有max(f(n), g(n))=O(f(n)+g(n))。因此,max(f(n), g(n))=O(f(n)+g(n))。

文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题文章来源地址https://www.toymoban.com/news/detail-489178.html

到了这里,关于文心一言 VS chatgpt (9)-- 算法导论2.3 7题 3.1 1题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS chatgpt (12)-- 算法导论3.1 6~7题

    文心一言: chatgpt: 要证明「一个算法的运行时间为θ(g(n))当且仅当其最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n))」,需要证明两个方向: 如果算法的运行时间为θ(g(n)),则它的最坏情况运行时间为O(g(n)),且最好情况运行时间为Ω(g(n))。 如果算法的最坏情况运

    2024年02月01日
    浏览(40)
  • 文心一言 VS chatgpt (13)-- 算法导论3.1 8题 3.2 1题

    文心一言: chatgpt: 类比于单个参数的情形,我们可以定义类似的记号: O(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,上界为 g(n, m) 的某个常数倍。 Ω(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,下界为 g(n, m) 的某个常数倍。

    2024年02月09日
    浏览(32)
  • 文心一言 VS chatgpt (3)-- 算法导论2.1

    文心一言: 以图 2-2 为模型,说明INSERTION-SORT 在数组 A=(31,41,59,26,41,58) 上的执行过程。 首先,将数组 A 中的每个元素 a[i] 插入到数组 A[i-1] 的后面,即 a[i] = a[i-1]+1。 接着,将数组 A 中的每个元素 a[i] 插入到数组 A[i-1] 的前面,即 a[i] = a[i-1]-1。 最后,将数组 A 中的每个

    2024年02月09日
    浏览(41)
  • 文心一言 VS chatgpt (2)-- 算法导论1.2

    文心一言: 在应用层需要算法内容的应用的一个例子是无人机自主飞行控制。无人机自主飞行控制需要算法来确定无人机的位置、速度和方向,以便在复杂的环境中实现精确的导航和避障。 具体来说,无人机自主飞行控制算法可以分为以下几个步骤: 1.环境感知:无人机需

    2024年02月11日
    浏览(47)
  • 文心一言 VS chatgpt (1)-- 算法导论1.1

    文心一言: 现实生活中需要排序的一个例子: 在一个商店里,顾客需要购买一些商品。他们需要按照价格从低到高排序,以便更容易地找到他们想要的商品。 现实生活中需要计算凸壳的一个例子: 在一个建筑工地上,工人需要计算一个凸壳的面积。他们需要知道凸壳的高度

    2024年02月09日
    浏览(42)
  • 文心一言 VS chatgpt (14)-- 算法导论3.2 2~3题

    文心一言: chatgpt: 我们需要证明的等式为: a log ⁡ b c = c log ⁡ b a a^{log_b c} = c^{log_b a} a l o g b ​ c = c l o g b ​ a 。 首先,将 log ⁡ b c log_b c lo g b ​ c 看作一个变量 x x x ,那么原式可表示为 a x = c log ⁡ a b log ⁡ a c a^x = c^{frac{log_a b}{log_a c}} a x = c l o g a ​ c l o g a ​ b

    2024年02月11日
    浏览(32)
  • 文心一言 VS chatgpt (17)-- 算法导论4.1 3~4题

    在你的计算机上实现最大子数组问题的暴力算法和递归算法,需要满足以下要求: 1.暴力算法的时间复杂度为O(n^2),递归算法的时间复杂度为O(n)。 2.对于给定的问题规模n0,递归算法的性能优于暴力算法。 当问题规模n0是性能交叉点时,性能开始趋于最大。这是因为暴力算法

    2024年02月16日
    浏览(35)
  • 文心一言 VS chatgpt (16)-- 算法导论4.1 1~2题

    当A的所有元素均为负数时,FIND-MAXIMUM-SUBARRAY返回-1。 这是因为在二进制中,当所有元素均为负数时,A的每个元素都对应一个负数,而-1的二进制表示是11111111,与A的每个元素的值的每一位的负号是相对应的,所以,如果FIND-MAXIMUM-SUBARRAY调用这个函数,它会返回-1。 当A的所有

    2024年02月05日
    浏览(38)
  • 文心一言 VS chatgpt (5)-- 算法导论2.2 3~4题

    文心一言: chatgpt: 假设要查找的元素等可能地为数组中的任意元素,则每个元素成为待查找元素的概率都是 1/n,其中 n 是数组长度。 平均情况下,需要检查输入序列的元素个数是 (n+1)/2,即循环次数的期望值。因为对于一个长度为 n 的数组,若待查找元素在第 i 个位置,则

    2024年02月09日
    浏览(38)
  • 文心一言 VS chatgpt (4)-- 算法导论2.2 1~2题

    文心一言: chatgpt: 可以使用大 O 记号表示该函数的渐进复杂度,即: f ( n ) = n 3 1000 − 100 n 2 − 100 n 13 = O ( n 3 ) . f(n) = frac{n^3}{1000} - 100n^2 - 100n^{13} = O(n^3). f ( n ) = 1000 n 3 ​ − 100 n 2 − 100 n 13 = O ( n 3 ) . 其中, O ( n 3 ) O(n^3) O ( n 3 ) 表示该函数在 n n n 趋近于无穷大时,其增长

    2024年02月13日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包