Stable Diffusion:一种新型的深度学习AIGC模型

这篇具有很好参考价值的文章主要介绍了Stable Diffusion:一种新型的深度学习AIGC模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Stable Diffusion:一种新型的深度学习AIGC模型

潜在扩散模型 | AIGC| Diffusion Model 

图片感知压缩 | GAN | Stable Diffusion

随着生成型AI技术的能力提升,越来越多的注意力放在了通过AI模型提升研发效率上。业内比较火的AI模型有很多,比如画图神器Midjourney、用途多样的Stable Diffusion,以及OpenAI此前刚刚迭代的DALL-E 2。

对于研发团队而言,尽管Midjourney功能强大且不需要本地安装,但它对于硬件性能的要求较高,甚至同一个指令每次得到的结果都不尽相同。相对而言,Stable Diffusion因具备功能多、开源、运行速度快,且能耗低内存占用小成为更理想的选择。

Stable Diffusion:一种新型的深度学习AIGC模型

 

AIGC和ChatGPT4技术的爆燃和狂飙,让文字生成、音频生成、图像生成、视频生成、策略生成、GAMEAI、虚拟人等生成领域得到了极大的提升。不仅可以提高创作质量,还能降低成本,增加效率。同时,对GPU和算力的需求也越来越高,因此GPU服务器厂商开始涌向该赛道,为这一领域提供更好的支持。

本文将重点从Stable Diffusion如何安装、Stable Diffusion工作原理及Diffusion model与GAN相比的优劣势为大家展开详细介绍。

Stable Diffusion如何安装

Stable Diffusion是一个非常有用的工具,可以帮助用户快速、准确地生成想要的场景及图片。它的安装也非常简单,只需要按照上述步骤进行即可。如果您需要快速生成图片及场景,Stable Diffusion是一个值得尝试的工具。

一、环境准备

1、硬件方面

1)显存

4G起步,4G显存支持生成512*512大小图片,超过这个大小将卡爆失败。这里小编建议使用RTX 3090。

2)硬盘

10G起步,模型基本都在5G以上,有个30G硬盘不为过吧?现在硬盘容量应该不是个问题。

2、软件方面

1)Git

https://git-scm.com/download/win

下载最新版即可,对版本没有要求。

2)Python

https://www.python.org/downloads/

3)Nvidia CUDA

https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_516.94_windows.exe

版本11.7.1,搭配Nvidia驱动516.94,可使用最新版。

4)stable-diffusion-webui

https://github.com/AUTOMATIC1111/stable-diffusion-webui

核心部件当然用最新版本~~但注意上面三个的版本的兼容性。

5)中文语言包

https://github.com/VinsonLaro/stable-diffusion-webui-chinese

下载chinese-all-0306.json 和 chinese-english-0306.json文件

6)扩展(可选)

https://github.com/Mikubill/sd-webui-controlnet

下载整个sd-webui-controlnet压缩包

https://huggingface.co/Hetaneko/Controlnet-models/tree/main/controlnet_safetensors

https://huggingface.co/lllyasviel/ControlNet/tree/main/models

https://huggingface.co/TencentARC/T2I-Adapter/tree/main

试用时先下载第一个链接中的control_openpose.safetensors 或 第二个链接中的control_sd15_openpose.pth文件

7)模型

https://huggingface.co/models

https://civitai.com

可以网上去找推荐的一些模型,一般后缀名为ckpt、pt、pth、safetensors ,有时也会附带VAE(.vae.pt)或配置文件(.yaml)。

二、安装流程

1)安装Git

就正常安装,无问题。

2)安装Python

建议安装在非program files、非C盘目录,以防出现目录权限问题。

注意安装时勾选Add Python to PATH,这样可以在安装时自动加入windows环境变量PATH所需的Python路径。

3)安装Nvidia CUDA

正常安装,无问题。

4)安装stable-diffusion-webui

国内需要用到代理和镜像,请按照下面的步骤操作:

a) 编辑根目录下launch.py文件

将https://github.com替换为https://ghproxy.com/https://github.com,即使用Ghproxy代理,加速国内Git。

b) 执行根目录下webui.bat文件

根目录下将生成tmp和venv目录。

c) 编辑venv目录下pyvenv.cfg文件

将include-system-site-packages = false改为include-system-site-packages = true。

d) 配置python库管理器pip

方便起见,在\venv\Scripts下打开cmd后执行如下命令:

xformer会安装到\venv\Lib\site-packages中,安装失败可以用pip install -U xformers命试试。

e) 安装语言包

将文件chinese-all-0306.json 和 chinese-english-0306.json放到目录\localizations目录中。运行webui后进行配置,操作方法见下。

f) 安装扩展(可选)

将sd-webui-controlnet解压缩到\extensions目录中。将control_sd15_openpose.pth文件复制到/extensions/sd-webui-controlnet/models目录中。不同的扩展可能还需要安装对应的系统,比如controlnet要正常使用则还需要安装ffmpeg等。

g) 安装模型

下载的各种模型放在\models\Stable-diffusion目录中即可。

h) 再次执行根目录下webui.bat文件

用浏览器打开webui.bat所提供的网址即可运行。

其中提供了网址:http://127.0.0.1:7860。

打开该网址后在Settings -> User interface -> Localization (requires restart)设置语言,在菜单中选择chinese-all-0220(前提是已经在目录中放入了对应语言包,见上),点击Apply Settings确定,并且点击Reload UI重启界面后即可。

Stable Diffusion背后的原理

Latent Diffusion Models(潜在扩散模型)的整体框架如下图所示。首先需要训练一个自编码模型,这样就可以利用编码器对图片进行压缩,然后在潜在表示空间上进行扩散操作,最后再用解码器恢复到原始像素空间。这种方法被称为感知压缩(Perceptual Compression)。个人认为这种将高维特征压缩到低维,然后在低维空间上进行操作的方法具有普适性,可以很容易地推广到文本、音频、视频等领域。

在潜在表示空间上进行diffusion操作的主要过程和标准的扩散模型没有太大的区别,所使用的扩散模型的具体实现为time-conditional UNet。但是,论文为扩散操作引入了条件机制(Conditioning Mechanisms),通过cross-attention的方式来实现多模态训练,使得条件图片生成任务也可以实现。

下面我们针对感知压缩、扩散模型、条件机制的具体细节进行展开。

一、图片感知压缩(Perceptual Image Compression)

感知压缩本质上是一个tradeoff。之前的许多扩散模型没有使用这种技术也可以进行,但是原有的非感知压缩的扩散模型存在一个很大的问题,即在像素空间上训练模型时,如果希望生成高分辨率的图像,则训练空间也是高维的。感知压缩通过使用自编码模型,忽略高频信息,只保留重要的基础特征,从而大幅降低训练和采样阶段的计算复杂度,使文图生成等任务能够在消费级GPU上在10秒内生成图片,降低了落地门槛。

感知压缩利用预训练的自编码模型,学习到一个在感知上等同于图像空间的潜在表示空间。这种方法的优势在于,只需要训练一个通用的自编码模型,就可以用于不同的扩散模型的训练,在不同的任务上使用。

因此,基于感知压缩的扩散模型的训练本质上是一个两阶段训练的过程,第一阶段需要训练一个自编码器,第二阶段才需要训练扩散模型本身。在第一阶段训练自编码器时,为了避免潜在表示空间出现高度的异化,作者使用了两种正则化方法,一种是KL-reg,另一种是VQ-reg,因此在官方发布的一阶段预训练模型中,会看到KL和VQ两种实现。在Stable Diffusion中主要采用AutoencoderKL这种实现。

二、潜在扩散模型(Latent Diffusion Models)

首先简要介绍一下普通的扩散模型(DM),扩散模型可以解释为一个时序去噪自编码器(equally weighted sequence of denoising autoencoders) 

 ,其目标是根据输入  去预测一个对应去噪后的变体,或者说预测噪音,其中 是输入  的噪音版本。相应的目标函数可以写成如下形式:

。其中  从  中均匀采样获得。

而在潜在扩散模型中,引入了预训练的感知压缩模型,它包括一个编码器  和一个解码器  。这样就可以利用在训练时就可以利用编码器得到  ,从而让模型在潜在表示空间中学习,相应的目标函数可以写成如下形式:

三、条件机制

除了无条件图片生成外,我们也可以进行条件图片生成,这主要是通过拓展得到一个条件时序去噪自编码器(conditional denoising autoencoder)  来实现的,这样一来我们就可通过  来控制图片合成的过程。具体来说,论文通过在UNet主干网络上增加cross-attention机制来实现  。为了能够从多个不同的模态预处理   ,论文引入了一个领域专用编码器(domain specific encoder)   ,它用来将  映射为一个中间表示   ,这样我们就可以很方便的引入各种形态的条件(文本、类别、layout等等)。最终模型就可以通过一个cross-attention层映射将控制信息融入到UNet的中间层,cross-attention层的实现如下:

其中   是UNet的一个中间表征。相应的目标函数可以写成如下形式:

四、效率与效果的权衡

分析不同下采样因子f∈{1,2,4,8,16,32}(简称LDM-f,其中LDM-1对应基于像素的DMs)的效果。为了获得可比较的测试结果,固定在一个NVIDIA A100上进行了实验,并使用相同数量的步骤和参数训练模型。实验结果表明,LDM-{1,2}这样的小下采样因子训练缓慢,因为它将大部分感知压缩留给扩散模型。而f值过大,则导致在相对较少的训练步骤后保真度停滞不前,原因在于第一阶段压缩过多,导致信息丢失,从而限制了可达到的质量。LDM-{4-16}在效率和感知结果之间取得了较好的平衡。与基于像素的LDM-1相比,LDM-{4-8}实现了更低的FID得分,同时显著提高了样本吞吐量。对于像ImageNet这样的复杂数据集,需要降低压缩率以避免降低质量。总之,LDM-4和-8提供了较高质量的合成结果。

Diffusion model与GAN相比的优劣势

一、优点

Diffusion Model相比于GAN,明显的优点是避免了麻烦的对抗学习。此外,还有几个不太明显的好处:首先,Diffusion Model可以“完美”用latent去表示图片,因为我们可以用一个ODE从latent变到图片,同一个ODE反过来就可以从图片变到latent。而GAN很难找到真实图片对应什么latent,所以可能会不太好修改非GAN生成的图片。其次,Diffusion Model可以用来做“基于色块的编辑”(SDEdit),而GAN没有这样的性质,所以效果会差很多。再次,由于Diffusion Model和score之间的联系,它可以用来做inverse problem solver的learned prior,例如我有一个清晰图片的生成模型,看到一个模糊图片,可以用生成模型作为先验让图片更清晰。最后,Diffusion Model可以求model likelihood,而这个GAN就很难办。Diffusion Model最近的流行一部分也可能是因为GAN卷不太动了。虽然严格意义上说,Diffusion Model最早出自Jascha Sohl-Dickstein在ICML 2015就发表的文章,和GAN的NeurIPS 2014也差不了多少;不过DCGAN/WGAN这种让GAN沃克的工作在2015-17就出了,而Diffusion Model在大家眼中做沃克基本上在NeurIPS 2020,所以最近看上去更火也正常。

二、不足之处

Diffusion model相比于GAN也存在一些缺陷。首先,无法直接修改潜在空间的维度,这意味着无法像StyleGAN中使用AdaIN对图像风格进行操作。其次,由于没有判别器,如果监督条件是“我想要网络输出的东西看起来像某个物体,但我不确定具体是什么”,就会比较困难。而GAN可以轻松地实现这一点,例如生成长颈鹿的图像。此外,由于需要迭代,生成速度比较慢,但在单纯的图像生成方面已经得到了解决。目前在条件图像生成方面的研究还不够充分,但可以尝试将Diffusion model应用于这一领域。文章来源地址https://www.toymoban.com/news/detail-489327.html

到了这里,关于Stable Diffusion:一种新型的深度学习AIGC模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Textual Inversion: 一种精调Stable Diffusion模型的方法

    最近的文本到图像Stable Diffusion (SD)模型已经证明了使用文本提示合成新颖场景的前所未有的能力。这些文本到图像的模型提供了通过自然语言指导创作的自由。然而,它们的使用受到用户描述特定或独特场景、艺术创作或新物理产品的能力的限制。很多时候,用户被迫行使

    2024年02月03日
    浏览(44)
  • AIGC:文生图模型Stable Diffusion

    Stable Diffusion 是由CompVis、Stability AI和LAION共同开发的一个文本转图像模型,它通过LAION-5B子集大量的 512x512 图文模型进行训练,我们只要简单的输入一段文本,Stable Diffusion 就可以迅速将其转换为图像,同样我们也可以置入图片或视频,配合文本对其进行处理。 Stable Diffusion的

    2024年02月15日
    浏览(42)
  • 【AIGC】Stable Diffusion的模型入门

    下载好相关模型文件后,直接放入Stable Diffusion相关目录即可使用,Stable Diffusion 模型就是我们日常所说的大模型,下载后放入**webuimodelsStable-diffusion**目录,界面上就会展示相应的模型选项,如下图所示。作者用夸克网盘分享了「大模型」 链接:https://pan.quark.cn/s/bd3491e5199

    2024年02月20日
    浏览(43)
  • 【AIGC】Stable Diffusion的模型微调

    为什么要做模型微调 模型微调可以在现有模型的基础上,让AI懂得如何更精确生成/生成特定的风格、概念、角色、姿势、对象。Stable Diffusion 模型的微调方法通常依赖于您要微调的具体任务和数据。 下面是一个通用的微调过程的概述 : 准备数据集 :准备用于微调的数据集。

    2024年02月19日
    浏览(47)
  • 【AIGC】Stable Diffusion之模型微调工具

    推荐一款好用的模型微调工具,cybertron furnace 是一个lora训练整合包,提供训练 lora 模型的工具集或环境。集成环境包括必要的依赖项和配置文件、预训练脚本,支持人物、二次元、画风、自定义lora的训练,以简化用户训练 lora 模型的流程。支持图片预处理、图片的标签编辑

    2024年02月20日
    浏览(54)
  • 【小白】一文读懂AIGC模型之Stable Diffusion模型

      Stable Diffusion(SD)模型是一种基于Latent Diffusion Models(LDMs)的生成式模型,总共有1B左右的参数量,可以用于文生图、图生图、等任务中。   文生图任务是将文本输入到SD模型中,输出符合文本描述的图片;图生图任务是在输入文本的基础上,再输入一张图片,模型根

    2024年04月25日
    浏览(36)
  • AIGC stable diffusion学习笔记

    目录 项目跑通了 原理和知识 训练自己的数据图片: 安装依赖库:

    2024年02月04日
    浏览(42)
  • AIGC - Stable Diffusion 的 AWPortrait 1.1 模型与 Prompts 设置

    欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/131565908 AWPortrait 1.1 网址:https://www.liblibai.com/modelinfo/721fa2d298b262d7c08f0337ebfe58f8 介绍:AWPortrait1.1的创作过程其实是思考真实人像和AI生成影像视觉上的区别是什么的过程,希望AWPortrait能够在

    2024年02月13日
    浏览(72)
  • AI图像(AIGC for PIC)大模型实战|Stable Diffusion

    AI GC text to pic 图像生成模型  目前随着AIGC模型的火爆,AI内容创作远超人类创造水平和能力,极大了提升了创作空间。 为此我们要接触新鲜事物,用于尝试新技术。 那针对目前火爆的AImodel我们开始进行学习,尝试本地化部署,生成自己的模型。 先感性的认识下模型的基础知

    2023年04月24日
    浏览(38)
  • 【AIGC】Stable Diffusion原理快速上手,模型结构、关键组件、训练预测方式

    在这篇博客中,将会用机器学习入门级描述,来介绍Stable Diffusion的关键原理。目前,网络上的使用教程非常多,本篇中不会介绍如何部署、使用或者微调SD模型。也会尽量精简语言,无公式推导,旨在理解思想。让有机器学习基础的朋友,可以快速了解SD模型的重要部分。如

    2024年02月08日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包