Spark大数据处理讲课笔记3.7 Spark任务调度

这篇具有很好参考价值的文章主要介绍了Spark大数据处理讲课笔记3.7 Spark任务调度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

零、本节学习目标

  1. 理解DAG概念
  2. 了解Stage划分
  3. 了解RDD在Spark中的运行流程

一、有向无环图

(一)DAG概念

  • DAG(Directed Acyclic Graph)叫做有向无环图,Spark中的RDD通过一系列的转换算子操作和行动算子操作形成了一个DAG。DAG是一种非常重要的图论数据结构。如果一个有向图无法从任意顶点出发经过若干条边回到该点,则这个图就是有向无环图。“4→6→1→2”是一条路径,“4→6→5”也是一条路径,并且图中不存在从顶点经过若干条边后能回到该点。
    Spark大数据处理讲课笔记3.7 Spark任务调度

(二)实例讲解

  • 根据RDD之间依赖关系的不同可将DAG划分成不同的Stage(调度阶段)。对窄依赖来说,RDD分区的转换处理是在一个线程里完成,所以窄依赖会被Spark划分到同一个Stage中;而对宽依赖来说,由于有Shuffle存在,所以只能在父RDD处理完成后,下一个Stage才能开始接下来的计算,因此宽依赖是划分Stage的依据,当RDD进行转换操作,遇到宽依赖类型的转换操作时,就划为一个Stage。
    Spark大数据处理讲课笔记3.7 Spark任务调度
  • A、C、E是三个RDD的实例
  • 当A做groupByKey转换操作生成B时,由于groupByKey转换操作属于宽依赖类型,所以就把A划分为一个Stage,如Stage1。
  • 当C做map转换操作生成D, D与E做union转换操作生成F。由于map和union转换操作都属于窄依赖类型,因此不进行Stage的划分,而是将C、D、E、F加入到同一个Stage中。
  • 当F与B进行join转换操作时,由于这时的join操作是非协同划分,所以属于宽依赖,因此会划分为一个Stage,如Stage2。
  • 剩下的B和G被划分为一个Stage,如Stage3。

二、Stage划分依据

  • Spark会根据DAG将整个计算划分为多个阶段,每个阶段称为一个Stage。每个Stage由多个Task任务并行进行计算,每个Task任务作用在一个分区上,一个Stage的总Task任务数量是由Stage中最后一个RDD的分区个数决定的
  • Stage的划分依据为是否有宽依赖,即是否有Shuffle。Spark调度器会从DAG图的末端向前进行递归划分,遇到Shuffle则进行划分,Shuffle之前的所有RDD组成一个Stage,整个DAG图为一个Stage。

(一)两阶段案例

  • 经典的单词计数执行流程的Stage划分如下图所示。
    Spark大数据处理讲课笔记3.7 Spark任务调度
  • 上图中的依赖关系一共可以划分为两个Stage:从后向前进行递归划分,RDD3到RDD4的转换是Shuffle操作,因此在RDD3与RDD4之间划开,继续向前查找,RDD1、RDD2、RDD3之间的关系为窄依赖,因此为一个Stage;整个转换过程为一个Stage。

(二)三阶段案例

  • 下图中的依赖关系一共可以划分为3个Stage:从后向前进行递归划分,由于RDD6到RDD7的转换是Shuffle操作,因此在RDD6与RDD7之间划开,然后继续向前查找,RDD3、RDD4、RDD5、RDD6为一个Stage;由于RDD1到RDD2的转换是Shuffle操作,因此在RDD1与RDD2之间划开,然后继续向前查找,RDD1为一个Stage;整个转换过程为一个Stage。
    Spark大数据处理讲课笔记3.7 Spark任务调度

三、RDD在Spark中的运行流程

  • Spark的任务调度流程,即RDD在Spark中的运行流程分为RDD Objects、DAGScheduler、TaskScheduler以及Worker四个部分。
    Spark大数据处理讲课笔记3.7 Spark任务调度

(一)RDD Objects

  • 当RDD对象创建后,SparkContext会根据RDD对象构建DAG有向无环图,然后将Task提交给DAGScheduler。

(二)DAGScheduler

  • 将作业的DAG划分成不同Stage,每个Stage都是TaskSet任务集合,并以TaskSet为单位提交给TaskScheduler。

(三)TaskScheduler

  • 通过TaskSetManager管理Task,并通过集群中的资源管理器把Task发给集群中Worker的Executor。

(四)Worker

  • Spark集群中的Worker接收到Task后,把Task运行在Executor进程中,一个进程中可以有多个线程在工作,从而可以处理多个数据分区。

文章来源地址https://www.toymoban.com/news/detail-489523.html

到了这里,关于Spark大数据处理讲课笔记3.7 Spark任务调度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Spark大数据处理讲课笔记4.2 Spark SQL数据源 - 基本操作

    Spark大数据处理讲课笔记4.2 Spark SQL数据源 - 基本操作

      目录 零、本讲学习目标 一、基本操作 二、默认数据源 (一)默认数据源Parquet (二)案例演示读取Parquet文件 1、在Spark Shell中演示 2、通过Scala程序演示 三、手动指定数据源 (一)format()与option()方法概述 (二)案例演示读取不同数据源 1、读取房源csv文件 2、读取json,保

    2024年02月09日
    浏览(12)
  • Spark大数据处理学习笔记(2.2)搭建Spark Standalone集群

    Spark大数据处理学习笔记(2.2)搭建Spark Standalone集群

    一、在master虚拟机上安装配置Spark 1.1 将spark安装包上传到master虚拟机 下载Spark:pyw2 进入/opt目录,查看上传的spark安装包 1.2 将spark安装包解压到指定目录 执行命令: tar -zxvf spark-3.3.2-bin-hadoop3.tgz 修改文件名:mv spark-3.3.2-bin-hadoop3 spark-3.3.2 1.3 配置spark环境变量 执行命令:vim

    2024年02月09日
    浏览(12)
  • Spark大数据处理学习笔记(3.2.2)掌握RDD算子

    Spark大数据处理学习笔记(3.2.2)掌握RDD算子

    衔接上文:http://t.csdn.cn/Z0Cfj 功能: reduce()算子按照传入的函数进行归约计算 案例: 计算1 + 2 + 3 + …+100的值 计算1 × 2 × 3 × 4 × 5 × 6 的值(阶乘 - 累乘) 计算1 2 + 2 2 + 3 2 + 4 2 + 5**2的值(先映射,后归约) 功能: collect()算子向Driver以数组形式返回数据集的所有元素。通常对

    2024年02月08日
    浏览(18)
  • Spark大数据处理学习笔记(3.1)掌握RDD的创建

    文章目录 一、准备工作 1.1 准备文件 1.1.1 准备本地系统文件 在/home目录里创建test.txt 单词用空格分隔 1.1.2 启动HDFS服务 执行命令:start-dfs.sh 1.1.3 上传文件到HDFS 将test.txt上传到HDFS的/park目录里 查看文件内容 1.2 启动Spark Shell 1.2.1 启动Spark服务 执行命令:start-all.sh 1.2.2 启动Sp

    2024年02月09日
    浏览(11)
  • Spark大数据处理学习笔记(2.4)IDEA开发词频统计项目

    Spark大数据处理学习笔记(2.4)IDEA开发词频统计项目

    该文章主要为完成实训任务,详细实现过程及结果见【http://t.csdn.cn/0qE1L】 从Scala官网下载Scala2.12.15 - https://www.scala-lang.org/download/2.12.15.html 安装在默认位置 安装完毕 在命令行窗口查看Scala版本(必须要配置环境变量) 启动HDFS服务 启动Spark集群 在master虚拟机上创建单词文件

    2024年02月08日
    浏览(17)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(3)数据准备和数据预处理

    【大厂AI课学习笔记】【2.2机器学习开发任务实例】(3)数据准备和数据预处理

    项目开始,首先要进行数据准备和数据预处理。 数据准备的核心是找到这些数据,观察数据的问题。 数据预处理就是去掉脏数据。 缺失值的处理,格式转换等。 延伸学习: 在人工智能(AI)的众多工作流程中,数据准备与预处理占据着举足轻重的地位。这两个步骤不仅影响

    2024年02月19日
    浏览(13)
  • Spark重温笔记(四):秒级处理庞大数据量的 SparkSQL 操作大全,能否成为你的工作备忘指南?

    前言:今天是温习 Spark 的第 4 天啦!主要梳理了 SparkSQL 工作中常用的操作大全,以及演示了几个企业级案例,希望对大家有帮助! Tips:\\\"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊! 喜欢我的博

    2024年04月11日
    浏览(15)
  • 大数据处理:利用Spark进行大规模数据处理

    大数据处理是指对大规模、高速、多源、多样化的数据进行处理、分析和挖掘的过程。随着互联网、人工智能、物联网等领域的发展,大数据处理技术已经成为当今科技的核心技术之一。Apache Spark是一个开源的大数据处理框架,它可以处理批量数据和流式数据,并提供了一系

    2024年03月22日
    浏览(10)
  • 【spark大数据】spark大数据处理技术入门项目--购物信息分析

    【spark大数据】spark大数据处理技术入门项目--购物信息分析

    购物信息分析基于spark 目录 本案例中三个文案例中需要处理的文件为 order_goods.txt、products.txt 以及 orders.txt 三个文件,三个文件的说明如下 一、本实训项目针对实验数据主要完成了哪些处理? 二、Hadoop+Spark集群环境的搭建步骤有哪些?(只介绍完全分布式集群环境的搭建)

    2023年04月08日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包