Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

这篇具有很好参考价值的文章主要介绍了Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【新智元导读】Meta的大规模多语言语音 (MMS) 项目将彻底改变语音技术,使用wav2vec 2.0的自监督学习,MMS将语音技术扩展到1100到4000种语言。

在语音方面,Meta又达到了另一个LLaMA级的里程碑。

今天,Meta推出了一个名为MMS的大规模多语言语音项目,它将彻底改变语音技术。

MMS支持1000多种语言,用圣经训练,错误率仅为Whisper数据集的一半。

只凭一个模型,Meta就建起了一座巴别塔。

并且,Meta选择将所有模型和代码开源,希望为保护世界语种的多样性做出贡献。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

在此之前的模型可以覆盖大约100种语言,而这次,MMS直接把这个数字增加了10-40倍!

具体来说,Meta开放了1100多种语言的多语种语音识别/合成模型,以及4000多种语言的语音识别模型。

与OpenAI Whisper相比,多语言ASR模型支持11倍以上的语言,但在54种语言上的平均错误率还不到FLEURS的一半。

而且,将ASR扩展到如此多语言之后,只造成了非常小的性能下降。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

论文地址:https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/

保护消失语种,MMS把语音识别增加40倍

让机器具备识别和产生语音的能力,可以让更多人获得信息。

然而,为这些任务生成高质量的机器学习模型,就需要大量的标记数据,比如数千小时的音频以及转录——对于大多数语言来说,这种数据根本就不存在。

现有的语音识别模型,只涵盖了大约100种语言,在地球上的7000多种已知语言中,这只占很小一部分。令人担忧的是,在我们有生之年,这些语言中有一半都面临着消失的危险。

在Massively Multilingual Speech(MMS)项目中,研究者通过结合wav2vec 2.0(Meta在自监督学习方面的开创性工作)和一个新的数据集来克服了一些挑战。

这个数据集提供了超过1100种语言的标记数据,和近4000种语言的未标记数据。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

通过跨语言训练,wav2vec 2.0学习了多种语言中使用的语音单元

其中一些语言,如Tatuyo语,只有几百个使用者,而数据集中的大多数语言,以前根本就不存在语音技术。

而结果显示,MMS模型的性能优于现有的模型,覆盖语言的数量是现有模型的10倍。

Meta一向专注于多语言工作:在文本上,Meta的NLLB项目将多语言翻译扩展到了200种语言,而MMS项目,则将语音技术扩展到更多语言。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

MMS支持1,107种语言的语音转文本和文本转语音,支持4,000多种语言的识别

圣经解决语音数据集难题

收集数千种语言的音频数据并不是一件简单的事情,这也是Meta的研究人员面临的第一个挑战。

要知道,现有的最大语音数据集最多也只涵盖了100种语言。为了克服这个问题,研究人员转向了宗教文本,如《圣经》。

这类文本已经被翻译成许多不同的语言,被用于广泛的研究,还有各种公开的录音。

为此,Meta的研究者专门创建了一个超过1100种语言的《新约》阅读数据集,平均每种语言提供32小时的数据。

再加上其他各种宗教读物的无标签录音,研究者将可用的语言数量增加到了4000多种。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

在MMS数据上训练的自动语音识别模型,在FLEURS基准测试中,对男性和女性说话者具有相似的错误率

这些数据通常是由男性朗读的,但模型对男性和女性的声音表现得同样好。

并且,虽然录音的内容是宗教性的,但这并没有使模型过度偏向于产生更多的宗教语言。

研究人员分析认为,这是因为他们使用了连接主义时间分类方法,与用于语音识别的大语言模型或序列对序列模型相比,它的约束性要大得多。

模型越大,越能打?

研究人员首先对数据进行了预处理,以提高数据的质量,并使其能被机器学习算法所利用。

为此,研究人员在100多种语言的现有数据上训练了一个对齐模型,并将这个模型与一个高效的强制对齐算法一起使用,而该算法可以处理大约20分钟或更长时间的录音。

研究人员多次重复了这个过程,并根据模型的准确性进行了最后的交叉验证过滤步骤,为的是去除潜在的错误对齐数据。

为了使其他研究人员能够创建新的语音数据集,研究人员将对齐算法添加到了PyTorch中并发布了对齐模型。

目前,每种语言都有32小时的数据,但这并不足以训练传统的监督式语音识别模型。

这也就是为什么研究人员在wav2vec 2.0上训练模型,这样可以大大减少训练一个模型所需的标注数据量。

具体来说,研究人员在超过1400种语言的约50万小时的语音数据上训练了自监督模型——这个量比过去多了近5倍。

然后针对特定的语音任务,如多语言语音识别或语言识别,研究人员再对模型进行微调即可。

为了更好地了解在大规模多语言语音数据上训练的模型的表现,研究人员在现有的基准数据集上对它们进行了评估。

研究人员使用一个1B参数的wav2vec 2.0模型对超过1100种语言进行多语言语音识别模型的训练。

随着语言数量的增加,性能确实有所下降,但这种下降比较轻微——从61种语言到1107种语言,字符错误率只增加了约0.4%,但语言覆盖率却增加了18倍以上。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

将每个系统支持的语言数量从61增加到1,107 时,使用MMS数据训练的多语言识别系统的61种FLEURS语言的错误率。错误率越高表示性能越低

在与OpenAI的Whisper进行同类比较时,研究人员发现,在Massively Multilingual Speech数据上训练的模型有将近一半的单词错误率,但Massively Multilingual Speech涵盖的语言是Whisper的11倍。

从数据中我们可以看出,与目前最好的语音模型相比,Meta的模型表现的真的非常不错。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

OpenAI Whisper与Massively Multilingual Speech在54种FLEURS语言上的单词错误率对比

接下来,研究人员使用自己的以及现有的数据集,如FLEURS和CommonVoice,为超过4000种语言训练了一个语言识别(LID)模型,并在FLEURS LID任务上对其进行了评估。

事实证明,哪怕支持了将近40倍的语言数量,性能依然很能打。

Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言

在现有工作的VoxLingua-107基准上的语言识别准确性,支持的语言刚刚超过100种,而MMS则支持超过4000种语言

研究人员还为超过1100种语言建立了文本转语音的系统。

大规模多语种语音数据有一个局限性,那就是对于许多语言来说,它包含的不同说话者数量相对较少,通常只有一个说话者。

然而,这个特点对于建立文本到语音系统来说是一个优势,因此研究人员为超过1100种语言训练了类似系统。

结果表明,这些系统产生的语音质量还算不错。

,时长00:44

未来属于单一模型

Meta的研究人员对这个结果感到很满意,但与所有新兴的AI技术一样,Meta目前的模型并不算完美。

比方说,语音到文本模型可能会误写选定的单词或短语,可能会导致冒犯性的或者不准确的输出结果。

同时,Meta认为,AI巨头的合作对于负责任的AI技术的发展至关重要。

世界上的许多语言都有消失的危险,而目前语音识别和语音生成技术的局限性只会加速这一趋势。

研究人员设想一个技术产生相反效果的世界,鼓励人们保持其语言的活力,因为他们可以通过说自己喜欢的语言来获取信息和使用技术。

大规模多语言语音项目是朝着这个方向迈出的重要一步。

在未来,研究人员希望进一步增加语言的覆盖面,支持更多的语言,甚至还会想办法搞定方言。要知道,方言对现有的语音技术来说可不简单。

Meta的最终目标是让人们能更容易地用自己喜欢的语言获取信息、使用设备。

最后,Meta的研究人员还设想了这样一个未来场景——靠一个单一的模型就可以解决所有语言的几个语音任务。

目前虽然Meta为语音识别、语音合成和语言识别训练了单独的模型,但研究人员相信,在未来,只需一个模型就能完成所有这些任务,甚至不止。

参考资料:

https://ai.facebook.com/blog/multilingual-model-speech-recognition/文章来源地址https://www.toymoban.com/news/detail-489779.html

到了这里,关于Meta语音达LLaMA级里程碑!开源MMS模型可识别1100+语言的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ResNet:深度学习中的重要里程碑

      目录 导言: 1. 应用 2. 结构介绍 3. 代码案例 深度学习的迅速发展在图像识别、语音处理和自然语言处理等领域取得了巨大的突破。然而,深度神经网络在训练过程中遇到了梯度消失和梯度爆炸等问题,限制了模型的性能和训练的深度。为了解决这些问题,研究人员于2015年

    2024年02月12日
    浏览(41)
  • 人工智能里程碑ChatGPT之最全详解图解

    2022年11月30日,美国硅谷的初创公司OpenAI推出了名为ChatGPT的AI聊天机器人,已经拥有超过一百万的用户,受到热烈的讨论,短短几天就火爆全网。它既能完成包括写代码,查BUG,翻译文献,写小说,写商业文案,写游戏策划,作诗等一系列常见文字输出型任务,也可以在和用

    2023年04月08日
    浏览(50)
  • 超级国际象棋:第二个里程碑已完成

    获取Cartesi资助的项目的最新进展,现在将完全去中心化的Web3国际象棋带到你的手中 “Ultrachess是一个完全基于区块链的国际象棋应用程序,由Cartesi Rollup技术支持,允许用户将真实价值投入到比赛中,不仅仅是他们的Elo分数。 nbsp; 此外,Ultrachess引入了一个在当前国际象棋范

    2024年02月12日
    浏览(41)
  • 3.0里程碑:Topomel Box 现已在微软商店可用

    猿友好! 我的程序 Topomel Box 的第三个版本(3.0)正式上架微软商店。通过微软商店这个统一的分发渠道,Topomel Box 有望与更多国家的用户见面并提供服务。 安装方法很简单,只需要打开微软商店(Microsoft Store),并搜索”topomel”,即可找到它。 搜索到 Topomel Box: 点击

    2024年02月09日
    浏览(99)
  • 3DES算法的起源与演进:保障信息安全的重要里程碑

    3DES算法是DES算法的增强版,由IBM公司在上世纪90年代初提出。DES算法的密钥长度只有56位,随着计算机计算能力的提升,其安全性逐渐受到威胁。为了增强数据的安全性,3DES算法采用了三次DES算法的迭代加密过程,使得密钥长度增加到168位。这一改进大大提高了数据的安全性

    2024年03月09日
    浏览(45)
  • 甘特图组件DHTMLX Gantt用例 - 如何拆分任务和里程碑项目路线图

    创建一致且引人注意的视觉样式是任何项目管理应用程序的重要要求,这就是为什么我们会在这个系列中继续探索DHTMLX Gantt图库的自定义。在本文中我们将考虑一个新的甘特图定制场景,DHTMLX Gantt组件如何创建一个项目路线图。 DHTMLX Gantt正式版下载 用例 - 带有自定义时间尺

    2024年02月05日
    浏览(45)
  • Nautilus Chain测试网迎阶段性里程碑,模块化区块链拉开新序幕

    Nautilus Chain 是目前行业内少有的真实实践的 Layer3 模块化链,该链曾在几个月前上线了测试网,并接受用户测试交互。该链目前正处于测试网阶段,并即将在不久上线主网,这也将是行业内首个正式上线的模块化区块链底层。 而在上个月,Nautilus Chain 测试网迎来了阶段性

    2024年02月09日
    浏览(49)
  • Covalent Network(CQT)发展新里程碑:SOC 2 数据安全认证通过,进一步加强了其人工智能支持

    Covalent Network(CQT)现已完成并通过了严格的 Service Organization Control(SOC) 2 Type II 的合规性审计,通过由备受行业认可的机构执行,进一步证明了 Covalent Network(CQT)团队坚定不移地致力于遵守最严格的 AICPA 信任服务标准,涵盖了安全性、机密性、可用性和隐私领域。 Covalent

    2024年02月22日
    浏览(43)
  • [AI Meta Llama-3] 最强开源大模型Llama 3发布!

    最强开源大模型Llama 3发布!我们看下重点: 今天,我们介绍Meta Llama 3,这是我们最先进的开源大型语言模型的下一代。 Llama 3模型很快将在AWS、Databricks、Google Cloud、Hugging Face、Kaggle、IBM WatsonX、Microsoft Azure、NVIDIA NIM和Snowflake上提供,并得到AMD、AWS、戴尔、英特尔、NVIDIA和高

    2024年04月23日
    浏览(47)
  • Meta发布升级大模型LLaMA 2:开源可商用

    论文地址 :https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/  Github 地址 :https://github.com/facebookresearch/llama LLaMA 2介绍       Meta之前发布自了半开源的大模型LLaMA,自从LLaMA发布以来,基于它的扩展模型就层出不穷,尤其是羊驼系列,我最近正在总结这

    2024年02月16日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包