【Python】Python进阶系列教程-- Python3 多线程(七)

这篇具有很好参考价值的文章主要介绍了【Python】Python进阶系列教程-- Python3 多线程(七)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

往期回顾:

  • Python进阶系列教程-- Python3 正则表达式(一)
  • Python进阶系列教程-- Python3 CGI编程(二)
  • Python进阶系列教程-- Python3 MySQL - mysql-connector 驱动(三)
  • Python进阶系列教程-- Python3 MySQL 数据库连接 - PyMySQL 驱动
  • Python进阶系列教程-- Python3 网络编程(五)
  • Python进阶系列教程-- Python3 SMTP发送邮件(六)

线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度。
  • 程序的运行速度可能加快。
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。

  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) – 这就是线程的退让。

  • 线程可以分为:

    • 内核线程:由操作系统内核创建和撤销。
    • 用户线程:不需要内核支持而在用户程序中实现的线程。
  • Python3 线程中常用的两个模块为:

    • _thread
    • threading(推荐使用)

thread 模块已被废弃。用户可以使用 threading 模块代替。所以,在 Python3 中不能再使用"thread" 模块。为了兼容性,Python3 将 thread 重命名为 “_thread”。

开始学习Python线程

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。语法如下:

_thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。

实例

#!/usr/bin/python3

import _thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print ("%s: %s" % ( threadName, time.ctime(time.time()) ))

# 创建两个线程
try:
   _thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   _thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print ("Error: 无法启动线程")

while 1:
   pass

执行以上程序输出结果如下:

Thread-1: Wed Jan  5 17:38:08 2022
Thread-2: Wed Jan  5 17:38:10 2022
Thread-1: Wed Jan  5 17:38:10 2022
Thread-1: Wed Jan  5 17:38:12 2022
Thread-2: Wed Jan  5 17:38:14 2022
Thread-1: Wed Jan  5 17:38:14 2022
Thread-1: Wed Jan  5 17:38:16 2022
Thread-2: Wed Jan  5 17:38:18 2022
Thread-2: Wed Jan  5 17:38:22 2022
Thread-2: Wed Jan  5 17:38:26 2022

执行以上程后可以按下 ctrl-c 退出。

线程模块

Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。

_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。

threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

使用 threading 模块创建线程

我们可以通过直接从 threading.Thread 继承创建一个新的子类,并实例化后调用 start() 方法启动新线程,即它调用了线程的 run() 方法:

实例

#!/usr/bin/python3

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, delay):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.delay = delay
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.delay, 5)
        print ("退出线程:" + self.name)

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            threadName.exit()
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")

以上程序执行结果如下;

开始线程:Thread-1
开始线程:Thread-2
Thread-1: Wed Jan  5 17:34:54 2022
Thread-2: Wed Jan  5 17:34:55 2022
Thread-1: Wed Jan  5 17:34:55 2022
Thread-1: Wed Jan  5 17:34:56 2022
Thread-2: Wed Jan  5 17:34:57 2022
Thread-1: Wed Jan  5 17:34:57 2022
Thread-1: Wed Jan  5 17:34:58 2022
退出线程:Thread-1
Thread-2: Wed Jan  5 17:34:59 2022
Thread-2: Wed Jan  5 17:35:01 2022
Thread-2: Wed Jan  5 17:35:03 2022
退出线程:Thread-2
退出主线程

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

实例

#!/usr/bin/python3

import threading
import time

class myThread (threading.Thread):
    def __init__(self, threadID, name, delay):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.delay = delay
    def run(self):
        print ("开启线程: " + self.name)
        # 获取锁,用于线程同步
        threadLock.acquire()
        print_time(self.name, self.delay, 3)
        # 释放锁,开启下一个线程
        threadLock.release()

def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print ("退出主线程")

执行以上程序,输出结果为:

开启线程: Thread-1
开启线程: Thread-2
Thread-1: Wed Jan  5 17:36:50 2022
Thread-1: Wed Jan  5 17:36:51 2022
Thread-1: Wed Jan  5 17:36:52 2022
Thread-2: Wed Jan  5 17:36:54 2022
Thread-2: Wed Jan  5 17:36:56 2022
Thread-2: Wed Jan  5 17:36:58 2022
退出主线程

线程优先级队列( Queue)

Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。

这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。

Queue 模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作
    实例
#!/usr/bin/python3

import queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print ("开启线程:" + self.name)
        process_data(self.name, self.q)
        print ("退出线程:" + self.name)

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print ("%s processing %s" % (threadName, data))
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
    pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
    t.join()


print ("退出主线程")

以上程序执行结果:文章来源地址https://www.toymoban.com/news/detail-489838.html

开启线程:Thread-1
开启线程:Thread-2
开启线程:Thread-3
Thread-3 processing One
Thread-1 processing Two
Thread-2 processing Three
Thread-3 processing Four
Thread-1 processing Five
退出线程:Thread-3
退出线程:Thread-2
退出线程:Thread-1
退出主线程

到了这里,关于【Python】Python进阶系列教程-- Python3 多线程(七)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python】Python系列教程-- Python3 数据类型转换(六)

    往期回顾: Python系列教程–Python3介绍(一) Python系列教程–Python3 环境搭建(二) Python系列教程–Python3 VScode(三) Python系列教程–Python3 基础语法(四) Python系列教程–Python3 基本数据类型(五) 有时候,我们需要对数据内置的类型进行转换,数据类型的转换,一般情况

    2024年02月08日
    浏览(59)
  • 【Python】Python系列教程-- Python3 迭代器与生成器(二十)

    往期回顾: Python系列教程–Python3介绍(一) Python系列教程–Python3 环境搭建(二) Python系列教程–Python3 VScode(三) Python系列教程–Python3 基础语法(四) Python系列教程–Python3 基本数据类型(五) Python系列教程-- Python3 数据类型转换(六) Python系列教程-- Python3 推导式(

    2024年02月08日
    浏览(64)
  • 特性介绍 | MySQL 测试框架 MTR 系列教程(二):进阶篇 - 内存/线程/代码覆盖率/单元/压力测试

    作者:卢文双 资深数据库内核研发 序言: 以前对 MySQL 测试框架 MTR 的使用,主要集中于 SQL 正确性验证。近期由于工作需要,深入了解了 MTR 的方方面面,发现 MTR 的能力不仅限于此,还支持单元测试、压力测试、代码覆盖率测试、内存错误检测、线程竞争与死锁等功能,因

    2024年02月03日
    浏览(47)
  • 【Python】Python进阶系列教程-- MongoDB(十二)

    往期回顾: Python进阶系列教程-- Python3 正则表达式(一) Python进阶系列教程-- Python3 CGI编程(二) Python进阶系列教程-- Python3 MySQL - mysql-connector 驱动(三) Python进阶系列教程-- Python3 MySQL 数据库连接 - PyMySQL 驱动 Python进阶系列教程-- Python3 网络编程(五) Python进阶系列教程

    2024年02月09日
    浏览(38)
  • 【Python】Python进阶系列教程--Python AI 绘画(二十)

    往期回顾: Python进阶系列教程-- Python3 正则表达式(一) Python进阶系列教程-- Python3 CGI编程(二) Python进阶系列教程-- Python3 MySQL - mysql-connector 驱动(三) Python进阶系列教程-- Python3 MySQL 数据库连接 - PyMySQL 驱动 Python进阶系列教程-- Python3 网络编程(五) Python进阶系列教程

    2024年02月08日
    浏览(31)
  • Python3 多线程

    在Python 3中,你可以使用`threading`模块来实现多线程编程。`threading`模块提供了一种简单的方式来创建和管理线程,以实现并发执行。 下面是一个简单的示例,展示了如何在Python 3中使用`threading`模块创建和启动多个线程: ```python import threading # 定义一个简单的线程类 class MyT

    2024年02月05日
    浏览(20)
  • 37.Python从入门到精通—Python3 多线程 线程模块 使用 threading 模块创建线程

    在Python 3中,线程模块已被重命名为_thread,同时还引入了更高级别的 threading 模块,它允许创建线程对象并提供了更多的方法来控制线程的行为。 以下是一个简单的示例,演示如何使用 threading 模块创建并启动线程: 在这个例子中,我们创建了一个名为 print_numbers 的函数,它

    2024年04月26日
    浏览(44)
  • docker (九)-进阶篇-dockerfile制作zabbix镜像(带python3环境)

    环境说明:根据前文docker (七)部署zabbix进行zabbix告警配置时,发现zabbix没有脚本所需要的python3环境,也没有yum环境 参考 https://www.cnblogs.com/daniel-ming/p/15341636.html          Zabbix docker镜像 build Python3_docker zabbixserver python-CSDN博客 容器起不来...查看日志      7:20240220:105203.7

    2024年02月22日
    浏览(51)
  • Python3 高级教程 | Python3 正则表达式(一)

    目录 一、Python3 正则表达式 (一)re.match函数 (二)re.search方法 (三)re.match与re.search的区别 二、检索和替换 (一)repl 参数是一个函数  (二)compile 函数  (三)findall (四)re.finditer (五)re.split 三、正则表达式对象 re.RegexObject re.MatchObject  四、正则表达式修饰符 - 可

    2024年02月13日
    浏览(58)
  • Python3数据科学包系列(三):数据分析实战

    Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 Python3数据科学包系列(三):数据分析实战 国庆中秋宅家自省: Python在Excel中绘图

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包