Spark SQL数据源的基本操作

这篇具有很好参考价值的文章主要介绍了Spark SQL数据源的基本操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、基本操作

Spark SQL提供了两个常用的加载数据和写入数据的方法:load()方法和save()方法。load()方法可以加载外部数据源为一个DataFrame,save()方法可以将一个DataFrame写入指定的数据源。

二、默认数据源

(一)默认数据源Parquet

默认情况下,load()方法和save()方法只支持Parquet格式的文件,Parquet文件是以二进制方式存储数据的,因此不可以直接读取,文件中包括该文件的实际数据和Schema信息,也可以在配置文件中通过参数spark.sql.sources.default对默认文件格式进行更改。Spark SQL可以很容易地读取Parquet文件并将其数据转为DataFrame数据集。

(二)案例演示读取Parquet文件

执行命令: cd $SPARK_HOME/examples/src/main/resources,查看Spark的样例数据文件users.parquet
Spark SQL数据源的基本操作

用cat命令显示users.parquet文件内容,只会显示乱码
启动hdfs:start-dfs.sh
Spark SQL数据源的基本操作

将数据文件users.parquet上传到HDFS的/datasource/input目录
Spark SQL数据源的基本操作

1、在Spark Shell中演示

启动spark服务:start-all.sh
Spark SQL数据源的基本操作

启动Spark Shell,执行命令:spark-shell --master spark://master:7077
Spark SQL数据源的基本操作
执行命令:val userdf = spark.read.load("hdfs://master:9000/datasource/input/users.parquet")
Spark SQL数据源的基本操作
执行命令:userdf.show,查看数据帧内容
Spark SQL数据源的基本操作
执行命令:userdf.printSchema,查看数据帧模式
Spark SQL数据源的基本操作
执行命令:userdf.select("name", "favorite_color").write.save("hdfs://master:9000/datasource/output"),对数据帧指定列进行查询,查询结果依然是数据帧,然后通过write成员的save()方法写入HDFS指定目录
Spark SQL数据源的基本操作

查看HDFS上的输出结果
Spark SQL数据源的基本操作

除了使用select()方法查询外,也可以使用SparkSession对象的sql()方法执行SQL语句进行查询,该方法的返回结果仍然是一个DataFrame。

基于数据帧创建临时视图,执行命令:userdf.createTempView("t_user")
Spark SQL数据源的基本操作
执行SQL查询,将结果写入HDFS,执行命令:spark.sql("select name, favorite_color from t_user").write.save("hdfs://master:9000/datasource/output2")
Spark SQL数据源的基本操作
查看HDFS上的输出结果
Spark SQL数据源的基本操作

练习1、将student.txt文件转换成student.parquet

解决思路:将student.txt转成studentDF,利用数据帧的save()方法保存到/datasource/output3目录,然后将文件更名复制到/datasource/input目录

得到学生数据帧 - studentDF
Spark SQL数据源的基本操作

val ds = spark.read.textFile("hdfs://master:9000/student/input/student.txt")
case class Student(id: Int, name: String, gender: String, age: Int)
import spark.implicits._
val studentDS = ds.map(line => {
      val fields = line.split(",")
      val id = fields(0).toInt
      val name = fields(1)
      val gender = fields(2)
      val age = fields(3).toInt
      Student(id, name, gender, age)
   }
)
val studentDF = studentDS.toDF()
studentDF.show

将学生数据帧保存为parquet文件,studentDF.write.save(“hdfs://master:9000/datasource/output3”)
Spark SQL数据源的基本操作
查看生成的parquet文件
Spark SQL数据源的基本操作
复制parquet文件到/datasource/input目录
Spark SQL数据源的基本操作

练习2、读取student.parquet文件得到学生数据帧,并显示数据帧内容

执行命令:val studentDF = spark.read.load(“hdfs://master:9000/datasource/input/student.parquet”)
Spark SQL数据源的基本操作
执行命令:studentDF.show
Spark SQL数据源的基本操作

2、在IntelliJ IDEA里演示

创建Maven项目
Spark SQL数据源的基本操作

设置项目相关信息
Spark SQL数据源的基本操作单击【Finish】按钮
Spark SQL数据源的基本操作
将java目录改成scala目录
Spark SQL数据源的基本操作

在pom.xml文件里添加相关依赖,设置源程序文件夹

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.army.sql</groupId>
    <artifactId>SparkSQLDemo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.12.15</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.1.3</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
    </build>
    
</project>

在resources目录里添加日志属性文件
Spark SQL数据源的基本操作

log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

在resources目录里添加HFDS配置文件
Spark SQL数据源的基本操作

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <description>only config in clients</description>
        <name>dfs.client.use.datanode.hostname</name>
        <value>true</value>
    </property>
</configuration>

创建net.army.sql.day01包,在包里创建ReadParquetFile对象
Spark SQL数据源的基本操作

package net.army.sql.day01

import org.apache.spark.sql.SparkSession

/**
 * 功能:读取Parquet文件
 * 作者:梁辰兴
 * 日期:20230612*/
object ReadParquetFile {
  def main(args: Array[String]): Unit = {
    // 创建或得到Spark会话对象
    val spark = SparkSession.builder()
      .appName("ReadParquetFile")
      .master("local[*]")
      .getOrCreate()
    // 加载student.parquet文件,得到数据帧
    val studentDF = spark.read.load("hdfs://master:9000/datasource/input/student.parquet")
    // 显示学生数据帧内容
    studentDF.show
    // 查询20岁以上的女生
    val girlDF = studentDF.filter("gender = '女' and age > 20")
    // 显示女生数据帧内容
    girlDF.show
    // 保存查询结果到HDFS(保证输出目录不存在)
    girlDF.write.save("hdfs://master:9000/datasource/output")
    // 关闭Spark会话对象
    spark.stop()
  }
}

运行程序,查看控制台结果

三、手动指定数据源

(一)format()与option()方法概述

使用format()方法可以手动指定数据源。数据源需要使用完全限定名(例如org.apache.spark.sql.parquet),但对于Spark SQL的内置数据源,也可以使用它们的缩写名(JSON、Parquet、JDBC、ORC、Libsvm、CSV、Text)。

通过手动指定数据源,可以将DataFrame数据集保存为不同的文件格式或者在不同的文件格式之间转换。

在指定数据源的同时,可以使用option()方法向指定的数据源传递所需参数。例如,向JDBC数据源传递账号、密码等参数。

(二)案例演示读取不同数据源

1、读取csv文件

执行命令:cd $SPARK_HOME/examples/src/main/resources,查看Spark的样例数据文件people.csv
Spark SQL数据源的基本操作
将people.csv文件上传到HDFS的/datasource/input目录,然后查看文件内
Spark SQL数据源的基本操作
在Spark Shell里,执行命令:val peopleDF = spark.read.format(“csv”).load(“hdfs://master:9000/datasource/input/people.csv”),读取人员csv文件,得到人员数据帧
Spark SQL数据源的基本操作执行命令:peopleDF.show,查看人员数据帧内容
Spark SQL数据源的基本操作

大家可以看到,people.csv文件第一行是字段名列表,但是转成数据帧之后,却成了第一条记录,这样显然是不合理的,怎么办呢?就需要用到option()方法来传递参数,告诉Spark第一行是表头header,而不是表记录。

执行命令:val peopleDF = spark.read.format(“csv”).option(“header”, “true”).load(“hdfs://master:9000/datasource/input/people.csv”)
Spark SQL数据源的基本操作执行命令:peopleDF.show,查看人员数据帧内容
Spark SQL数据源的基本操作
由于csv文件默认分隔符是逗号,而people.csv的分隔符是分号,因此要利用option(“delimiter”, “;”)告诉Spark

执行命令:val peopleDF = spark.read.format(“csv”).option(“header”, “true”).option(“delimiter”, “;”).load(“hdfs://master:9000/datasource/input/people.csv”)
Spark SQL数据源的基本操作执行命令:peopleDF.show,查看人员数据帧内容
Spark SQL数据源的基本操作

2、读取json,保存为parquet

查看people.json文件
Spark SQL数据源的基本操作
将people.json上传到HDFS的/datasource/input目录,并查看其内容
Spark SQL数据源的基本操作在Spark Shell里,执行命令:val peopleDF = spark.read.format(“json”).load(“hdfs://master:9000/datasource/input/people.json”)
Spark SQL数据源的基本操作

执行命令:peopleDF.show
Spark SQL数据源的基本操作
执行命令:peopleDF.select(“name”, “age”).write.format(“parquet”).save(“hdfs://master:9000/datasource/output4”) (注意:format(“parquet”)其实可以省掉的)
Spark SQL数据源的基本操作
查看生成的parquet文件(/datasource/output4/part-00000-a1e62c69-59e5-40b6-8391-89bdfffe61ff-c000.snappy.parquet)
Spark SQL数据源的基本操作
将该parquet文件更名拷贝到/datasource/input目录,执行命令: hdfs dfs -cp /datasource/output4/part-00000-d0adfd21-9f55-49fc-a3dd-93bd313ea8e2-c000.snappy.parquet /datasource/input/people.parquet
Spark SQL数据源的基本操作
现在读取/datasource/input/people.parquet文件得到人员数据帧
Spark SQL数据源的基本操作
查看人员数据帧内容
Spark SQL数据源的基本操作

3、读取jdbc数据源,保存为json文件

启动master的mysql服务
Spark SQL数据源的基本操作

在Navicat创建mastermysql连接,连接到master虚拟机上安装的MySQL
Spark SQL数据源的基本操作
查看student数据库里的user表
Spark SQL数据源的基本操作
执行命令

val userDF = spark.read.format("jdbc")
  .option("url", "jdbc:mysql://master:3306/student")
  .option("driver", "com.mysql.jdbc.Driver")
  .option("dbtable", "user")  
  .option("user", "root")  
  .option("password", "")
  .load()

结果报错,没有找到数据库驱动程序
Spark SQL数据源的基本操作
上传数据驱动程序到$SPARK_HOME/jars目录(每个节点都需要上传)
Spark SQL数据源的基本操作

查看上传的数据库驱动程序
Spark SQL数据源的基本操作

执行命令

val userDF = spark.read.format("jdbc")
  .option("url", "jdbc:mysql://master:3306/student")
  .option("driver", "com.mysql.jdbc.Driver")
  .option("dbtable", "user")  
  .option("user", "root")  
  .option("password", "")
  .load()

执行之后会有一个警告信息,通过设置useSSL=true来消除
Spark SQL数据源的基本操作

执行命令

val userDF = spark.read.format("jdbc")
  .option("url", "jdbc:mysql://master:3306/student?useSSL=false")
  .option("driver", "com.mysql.jdbc.Driver")
  .option("dbtable", "user")  
  .option("user", "root")  
  .option("password", "")
  .load()

执行之后得到用户数据帧
Spark SQL数据源的基本操作
执行命令:userDF.show,查看用户数据帧内容
Spark SQL数据源的基本操作
执行命令:userDF.write.format(“json”).save(“hdfs://master:9000/datasource/output5”)
Spark SQL数据源的基本操作
在虚拟机slave1查看生成的json文件,执行命令:hdfs dfs -cat /datasource/output5/*
Spark SQL数据源的基本操作

四、数据写入模式

(一)mode()方法

在写入数据时,可以使用mode()方法指定如何处理已经存在的数据,该方法的参数是一个枚举类SaveMode。

使用SaveMode类,需要import org.apache.spark.sql.SaveMode;

(二)枚举类SaveMode

SaveMode.ErrorIfExists:默认值。当向数据源写入一个DataFrame时,如果数据已经存在,就会抛出异常。

SaveMode.Append:当向数据源写入一个DataFrame时,如果数据或表已经存在,会在原有的基础上进行追加。

SaveMode.Overwrite:当向数据源写入一个DataFrame时,如果数据或表已经存在,就会将其覆盖(包括数据或表的Schema)。

SaveMode.Ignore:当向数据源写入一个DataFrame时,如果数据或表已经存在,就不会写入内容,类似SQL中的CREATE TABLE IF NOT EXISTS。

(三)案例演示不同写入模式

查看数据源:people.json
Spark SQL数据源的基本操作
查询该文件name里,采用覆盖模式写入/result,创建/result目录
Spark SQL数据源的基本操作
执行命令:val peopledf = spark.read.format(“json”).load(“hdfs://master:9000/datasource/input/people.json”)
Spark SQL数据源的基本操作
导入SaveMode类,执行命令:
import org.apache.spark.sql.SaveMode;
peopledf.select(“name”).write.mode(SaveMode.Overwrite).format(“json”).save(“hdfs://master:9000/result”)
Spark SQL数据源的基本操作
在slave1虚拟机上查看生成的json文件
Spark SQL数据源的基本操作
查询age列,以追加模式写入HDFS的/result目录,执行命令:peopledf.select(“age”).write.mode(SaveMode.Append).format(“json”).save(“hdfs://master:9000/result”)
Spark SQL数据源的基本操作
在slave1虚拟机上查看追加生成的json文件
Spark SQL数据源的基本操作

五、分区自动推断

(一)分区自动推断概述

表分区是Hive等系统中常用的优化查询效率的方法(Spark SQL的表分区与Hive的表分区类似)。在分区表中,数据通常存储在不同的分区目录中,分区目录通常以“分区列名=值”的格式进行命名。

以people作为表名,gender和country作为分区列,给出存储数据的目录结构
Spark SQL数据源的基本操作

(二)分区自动推断演示

1、建四个文件

在master虚拟机上/home里创建如下目录及文件,其中目录people代表表名,gender和country代表分区列,people.json存储实际人口数据

Spark SQL数据源的基本操作


{"name": "Wiek", "age": 85}
{"name": "Jenny", "age": 14}
{"name": "Alacn", "age": 35}

{"name": "张三丰", "age": 25}
{"name": "李诗琪", "age": 56}
{"name": "史蒂夫", "age": 38}

{"name": "王五", "age": 45}
{"name": "李四", "age": 44}
{"name": "张三", "age": 35}

{"name": "Alice", "age": 25}
{"name": "Mike", "age": 24}
{"name": "Linda", "age": 35}

2、读取表数据

执行命令:spark-shell,启动Spark Shell
Spark SQL数据源的基本操作

执行命令:val peopledf = spark.read.format(“json”).load(“file:///home/people”)
Spark SQL数据源的基本操作

3、输出Schema信息

执行命令:peopledf.printSchema()
Spark SQL数据源的基本操作

4、显示数据帧内容

执行命令:peopledf.show()
Spark SQL数据源的基本操作
从输出的Schema信息和表数据可以看出,Spark SQL在读取数据时,自动推断出了两个分区列gender和country,并将这两列的值添加到了数据帧peopledf中。

(三)分区自动推断注意事项

分区列的数据类型是自动推断的,目前支持数字、日期、时间戳、字符串数据类型。若不希望自动推断分区列的数据类型,则可以在配置文件中将spark.sql.sources.partitionColumnTypeInference.enabled的值设置为false(默认为true,表示启用)。当禁用自动推断时,分区列将使用字符串数据类型。文章来源地址https://www.toymoban.com/news/detail-490197.html

到了这里,关于Spark SQL数据源的基本操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark SQL数据源:Hive表

    Spark SQL还支持读取和写入存储在Apache Hive中的数据。然而,由于Hive有大量依赖项,这些依赖项不包括在默认的Spark发行版中,如果在classpath上配置了这些Hive依赖项,Spark就会自动加载它们。需要注意的是,这些Hive依赖项必须出现在所有Worker节点上,因为它们需要访问Hive序列化

    2024年02月11日
    浏览(38)
  • Spark SQL基本操作

    Spark SQL基本操作 将下列json数据复制到你的ubuntu系统/usr/local/spark下,并保存命名为employee.json 首先为employee.json创建DataFrame,并写出Python语句完成以下操作: 创建DataFrame 查询DataFrame的所有数据 查询所有数据,并去除重复的数据 查询所有数据,打印时去除id字段 筛选age30的记录

    2024年02月05日
    浏览(61)
  • Spark数据源educoder

    第1关:SparkSQL加载和保存         在右侧编辑器补充代码,加载 people.json 文件,以覆盖的方式保存到 people 路径里,继续加载 people1.json 文件,以附加的方式保存到 people 路径里,最后以表格形式显示 people 里前 20 行 Dataset 。

    2024年02月04日
    浏览(47)
  • SQL 数据库基本操作

    打开 SSMS(Microsoft SQL Server Management Studio),“对象资源管理器” 窗口列表中依次双击 “UERE-20220228OY” → ”数据库“ → ”系统数据库“ (”UERE-20220228OY“ 是系统连接的服务器名称,不同的计算机中名称不尽相同),在展开的列表中可看到 4个已经存在的数据库,分别为

    2024年02月08日
    浏览(52)
  • 【SQL server】数据库入门基本操作教学

    个人主页:【😊个人主页】 系列专栏:【❤️初识JAVA】 数据库是计算机系统中用于存储和管理数据的一种软件系统。它通常由一个或多个数据集合、管理系统和应用程序组成,被广泛应用于企业、政府和个人等各种领域。目前常用的数据库系统包括关系型数据库和非关系型

    2024年02月07日
    浏览(49)
  • 【MySQL 】:测试数据准备、SQL语句规范与基本操作

    欢迎来到小K的MySQL专栏,本节将为大家准备MySQL测试数据、以及带来SQL语句规范、数据库的基本操作的详细讲解 要学习SQL查询语句,首先必须解决一个问题,数据问题。为了方便大家学习阅读我的文章,在这里提供了一个test.sql文件 ✨ 登录MySQL,输入 source xxx/test.sql 导入sql文

    2024年02月10日
    浏览(44)
  • 【②MySQL 】:测试数据准备、SQL语句规范与基本操作

    欢迎来到小K的MySQL专栏,本节将为大家准备MySQL测试数据、以及带来SQL语句规范、数据库的基本操作的详细讲解 要学习SQL查询语句,首先必须解决一个问题,数据问题。为了方便大家学习阅读我的文章,在这里提供了一个test.sql文件 ✨ 登录MySQL,输入 source xxx/test.sql 导入sql文

    2024年02月10日
    浏览(47)
  • spark DStream从不同数据源采集数据(RDD 队列、文件、diy 采集器、kafka)(scala 编程)

    目录 1. RDD队列 2 textFileStream 3 DIY采集器 4 kafka数据源【重点】        a、使用场景:测试        b、实现方式: 通过ssc.queueStream(queueOfRDDs)创建DStream,每一个推送这个队列的RDD,都会作为一个DStream处理     1. 自定义采集器     2. 什么情况下需要自定采集器呢?          比

    2024年02月07日
    浏览(51)
  • ODBC 配置数据源(SQL server)

    1、在控制面板管理工具中找到\\\"数据源ODBC\\\",并启动。 2、点击添加 3、选中 sqlserver 4、填写服务器地址 5、填写登陆账号、密码 6、选择默认连接的数据库 7、配置完成,可以测试连接

    2024年02月07日
    浏览(38)
  • 数据库SQL2000最基本的安装和操作教程

    Chengg0769 2012年 转载请保留以下版权来源 www.mis2erp.com http://blog.csdn.net/chengg0769 http://www.haojiaocheng.cc 题外话: 之前写了一个项目,因为是国企,各种文档都要给到他们。当时就写了一个简单的维护管理 SQL2000 的文档。这是给客户管理员看的。有时候很需要客户管理员的密切配合

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包