光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

这篇具有很好参考价值的文章主要介绍了光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

福利:末文有Matlab全套哦

实践是检验知识和技能的唯一标准。只有将所学的知识应用到实际问题中,并通过实践不断地调整和完善,才能真正掌握和理解这些知识。

在 MATLAB 中,可以通过编写代码、运行程序、调试错误等方式进行实践。例如,可以尝试解决实际问题,如数据分析、信号处理、图像处理等,使用 MATLAB 中的函数和工具箱进行计算和处理。在实践中,可以深入理解 MATLAB 中的各种函数和工具,掌握它们的使用方法和注意事项,同时也可以发现其中的问题和不足,并通过实践不断地改进和完善。                                     

01分段函数

⚪️   函数f(x),当x>1,y=x^2;当x=[-1,1],y=1;当x<=-1,y=3+2x

第一种方法使用匿名函数的方法,就是使用不等号判断,当在此区间布尔值为1,对应函数乘以此布尔值不等于0

% 方法1
% 定义分段函数
f = @(x) (x > 1) .* x.^2 + (-1 <= x & x < 1) .* 1 + (x <= -1) .* (3 + 2*x);

% 生成 x 向量
x = linspace(-2, 2, 1000);

% 计算 y 向量
y = f(x);

% 绘制函数曲线
plot(x, y);
grid on;
xlabel('x');
ylabel('y');
title('分段函数 f(x)');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

另一种方法就是用常规函数进行,先定义分段函数part,用n统计其长度,可以把n当作x和y值对应的下标,生成x向量传入到函数part生成y值,通过plot绘制图形

part.m

% 定义分段函数function y = part(x)  n = length(x);  for i = 1:n      if x(i)>1          y(i)=x(i).^2;      elseif x(i)>-1          y(i)=1;      else          y(i)=3+2*x(i);      end   endend

主函数

% 生成 x 向量x = linspace(-2, 2, 1000);
% 计算 y 向量y = part(x);
% 绘制函数曲线plot(x, y);grid on;xlabel('x');ylabel('y');title('分段函数 f(x)');

或者使用find获取下标,方法和上述第二个方法类似,都是找下标的方式

% 生成 x 向量x = linspace(-2, 2, 1000);
% 计算 y 向量y = zeros(size(x));  % 初始化 y 向量ind1 = find(x > 1);  % 第一段函数的下标ind2 = find(x > -1 & x <= 1);  % 第二段函数的下标ind3 = find(x <= -1);  % 第三段函数的下标y(ind1) = x(ind1).^2;  % 第一段函数y(ind2) = 1;  % 第二段函数y(ind3) = 3 + 2*x(ind3);  % 第三段函数
% 绘制函数曲线plot(x, y);grid on;xlabel('x');ylabel('y');title('分段函数 f(x)');

02复合图

⚪️   两个一元函数y=x^3-x-1和y=|x|^(0.2)sin(5x)在区间-1<x<2的复合图。函数与图像

使用hold on方法将在同一个图像上进行绘制

% 生成 x 向量x = linspace(-1, 2, 1000);
% 计算 y1 向量y1 = x.^3 - x - 1;
% 计算 y2 向量y2 = abs(x).^0.2 .* sin(5*x);
% 绘制函数曲线plot(x, y1, 'Color','r','LineWidth', 2);hold on;  % 将两个曲线绘制在同一张图上plot(x, y2, 'LineWidth', 2);grid on;xlabel('x');ylabel('y');title('两个一元函数复合图');% 图例legend('y=x^3-x-1', 'y=|x|^{0.2}sin(5x)');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

除了使用上述的plot方法还可以使用fplot匿名函数方法进行绘制,fplot仅针对一元函数,二元函数不能使用的一种方法。

% 定义匿名函数f = @(x) x^3-x-1;y = @(x) abs(x).^0.2.*sin(5*x);
% 绘制函数曲线fplot(f,[-1,2],'r-.');hold on;fplot(y,[-1,2]);hold off% 添加网格;grid on 
% 添加坐标轴标签和标题xlabel('x');ylabel('y');title('两个一元函数复合图');
% 添加图例legend('y=x^3-x-1', 'y=|x|^{0.2}sin(5x)');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

03三维平面图

⚪️   三维平面图使用mesh绘制网格图,surf绘制三维曲面图,使用meshgrid生成三维网格矩阵,也就是区间变量值。

使用mesh进行绘制网格图

clear all; % 清除全部变量clc; % 清屏% 生成数据% meshgrid 函数可以用于生成二维网格矩阵,从而方便地生成网格图或三维图形。[X, Y] = meshgrid(-2:0.1:2); % 相当于生成区间%三维表达式Z = X.^2 - Y.^2;
% mesh方法绘制三维网格图mesh(X, Y, Z);xlabel('x');ylabel('y');zlabel('z');title('三维网格图');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

使用surf绘制曲面图

clear all; % 清除全部变量clc; % 清屏% 生成数据% meshgrid 函数可以用于生成二维网格矩阵,从而方便地生成网格图或三维图形。[X, Y] = meshgrid(-2:0.1:2); % 相当于生成区间%三维表达式Z = X.^2 - Y.^2;
% surf方法绘制三维曲面图surf(X, Y, Z);xlabel('x');ylabel('y');zlabel('z');title('三维曲面图');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

使用contour方法绘制等高线

clear all; % 清除全部变量clc; % 清屏% 生成数据% meshgrid 函数可以用于生成二维网格矩阵,从而方便地生成网格图或三维图形。[X, Y] = meshgrid(-2:0.1:2); % 相当于生成区间%三维表达式Z = X.^2 - Y.^2;
% contour方法绘制三维等高线contour(X, Y, Z);xlabel('x');ylabel('y');zlabel('z');title('三维等高线');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

如果确定某一等高线直接在后面添加参数

clear all; % 清除全部变量clc; % 清屏% 生成数据% meshgrid 函数可以用于生成二维网格矩阵,从而方便地生成网格图或三维图形。[X, Y] = meshgrid(-2:0.1:2); % 相当于生成区间%三维表达式Z = X.^2 - Y.^2;
% contour方法绘制等高线contour(X, Y, Z,[1]);xlabel('x');ylabel('y');zlabel('z');title('等高线为1');legend('等高线')

04三维线型图

⚪️   三维线性图使用plot3函数,而二维使用plot

使用plot3绘制三维线条

% 生成数据t = linspace(0, 10*pi, 1000);x = sin(t);y = cos(t);z = t;
% 绘制三维线条图plot3(x, y, z);xlabel('x');ylabel('y');zlabel('z');title('三维线条图');

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

05矩阵运算(线性方程组)

⚪️   线性方程组、逆矩阵inv、特征值和特征向量eig、二次型矩阵代数

使用rref化为行最简单求方程组的解答

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

clear all;%根据线性方程组得矩阵A和bA = [1 -1 1 -1;-1 1 1 -1;2 -2 -1 1];b = [1;1;-1];% 只有当矩阵A的秩和增广矩阵(A,b)秩相等才有解答if rank(A)==rank([A,b])    %使用rref求增广矩阵行最简    rref([A,b])else    disp('此方程组无解')end

输出结果:

ans =
     1    -1     0     0     0     0     0     1    -1     1     0     0     0     0     0

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

矩阵里有求二次型问题,在求二次型的过程中也少不了求特征值和特征向量的过程

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

首先根据给出的公式写出矩阵A,通过矩阵A求特征值和特征向量,正交化,规范化然后求出标准化。我的matlab版本较低,所以自行定义正交化,规范化函数

normalize.m

​​​​​​​

function V_norm = normalize(V) %定义规范化函数% 对向量进行规范化[m, n] = size(V);V_norm = zeros(m, n);for i = 1:n    V_norm(:, i) = V(:, i)/norm(V(:, i));endend

gramSchmidt.m

function [Q, R] = gramSchmidt(A)% Gram-Schmidt正交化过程[m, n] = size(A);Q = A;R = zeros(n, n);for j = 1:n    R(j, j) = norm(Q(:, j));    Q(:, j) = Q(:, j)/R(j, j);    for i = j+1:n        R(j, i) = Q(:, j)'*Q(:, i);        Q(:, i) = Q(:, i) - R(j, i)*Q(:, j);    endendend

主函数:

​​​​​​​

% 根据式子写二次型的矩阵A
A =[1 -2 2;-2 -2 4;2 4 -2];
% 求A的特征值和特征向量
[V,D]=eig(A);
% 特征向量的正交化
U = gramSchmidt(V);
%特征向量的规范化
Q = normalize(U);
%最后得到标准型
S = Q'*A*Q

输出结果:

​​​​​​​

S =
   -7.0000    0.0000    0.0000
    0.0000    2.0000         0
    0.0000   -0.0000    2.0000

06非线性方程组

⚪️   函数和方程非线性方程组变量不是一次的二次大于一次,这与线性方程组进行对比就能很清晰了

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

% 定义非线性方程组
f = @(x) [9*x(1)^2 + 36*x(2)^2 + 4*x(3)^2 - 36; x(1)^2 - 2*x(2)^2 - 20*x(3); 16*x(1) - x(1)^3 - 2*x(2)^2 - 16*x(3)^2];
% 初始值
x0 = [1; 1;1];
% 求解方程组
x = fsolve(f, x0);
% 输出结果
disp(x);

输出结果

​​​​​​​

   0.1342
    0.9972
   -0.0985

07函数的极值和零点

⚪️   "零点" 通常用于描述函数在 x 轴上的交点,也就是函数的值等于 0 的点。一个函数可能有多个零点,也可能没有零点。fzero 函数用于求解函数的零点。"求根" 通常用于描述解方程的过程,也就是找到一个或多个方程的根。对于一个方程 $f(x) = 0$,求根就是要找到它的解 x,使得 f(x) = 0。一个方程可能有多个根,也可能没有根。fsolve 函数用于求解方程的根。在数学中,极值是函数在某一区间内的最大值或最小值,也称为局部极值。在 MATLAB 中,可以使用 fminbnd 和 fminsearch 函数找到函数的局部最小值。

                                      

求根

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

这里只求最后一个,其他同理

​​​​​​​

% 函数表达式
f =(2.*x+3).^3-4
% 使用conv展开
f_v = expand(f) % 8*x^3 + 36*x^2 + 54*x + 23
% 展开后提取系数求根
p = [8,36,54,23]
value = roots(p)
% 验证polyval(多项式系数列表,代入的值)
polyval(p,value)

输出结果:

​​​​​​​

%定义符号变量t
syms t
x = log(cos(t));
y = cos(t)-t.*sin(t);
%x对t求导数,求导1次
dx_dt = diff(x,t)
%y对t求导数,求导1次
dy_dt = diff(y,t)
% 求方程的解,当x=-1的时候t等于多少
% 使用符号函数solve进行解答
% t的区间在[0,1.5]大于零
x=log(cos(t))==-1;
tt = abs(solve(x,t))
%代入到方程中,subs(函数,旧变量,新变量)
dx_dt = subs(dx_dt,t,tt)
dy_dt = subs(dy_dt,t,tt)
%最后得数,符号函数转换为具体的值用eval
eval(dx_dt./dy_dt)

或者用fzero,需要指定区间

​​​​​​​

%定义符号变量t
syms t
x = log(cos(t));
y = cos(t)-t.*sin(t);
%x对t求导数,求导1次
dx_dt = diff(x,t)
%y对t求导数,求导1次
dy_dt = diff(y,t)
% 求方程的解,当x=-1的时候t等于多少
% 使用符号函数solve进行解答
% t的区间在[0,1.5]大于零
x=log(cos(t))==-1;
tt = abs(solve(x,t))
%代入到方程中,subs(函数,旧变量,新变量)
dx_dt = subs(dx_dt,t,tt)
dy_dt = subs(dy_dt,t,tt)
%最后得数,符号函数转换为具体的值用eval
eval(dx_dt./dy_dt)

fzero 函数用于求解单变量非线性方程的零点,即在给定区间内找到函数的一个根。它使用的是单点迭代法(也称作牛顿迭代法),通过不断逼近函数的零点来计算方程的解。因此,fzero 函数适用于求解单变量非线性方程的根,但不能用于求解多变量非线性方程组的根。

roots 函数则用于求解多项式方程的根,即找到多项式在复数域中的所有根。它的输入是一个包含多项式系数的向量,输出是一个包含多项式在复数域中所有根的向量。roots 函数使用的是拉格朗日-牛顿插值法,通过对多项式进行插值来计算多项式的根。因此,roots 函数适用于求解多项式方程的根,但不能用于求解非多项式方程的根。                                  

                                      

极值

`fminbnd` 是 MATLAB 中用于求解单变量有界函数最小值的函数,它可以在指定的区间内自动寻找一个函数的最小值点。`fminbnd` 函数的基本语法如下:

[x, fval] = fminbnd(fun, x1, x2)

其中,`fun` 表示待求解的单变量有界函数,可以是一个函数句柄、一个匿名函数或一个函数字符串;`x1` 和 `x2` 分别表示待求解区间的左右端点,即函数的取值范围。函数的输出结果包括一个标量 `x`,表示函数的最小值点,以及一个标量 `fval`,表示函数在最小值点的取值。

需要注意的是,`fminbnd` 函数使用的是黄金分割法(golden section method),通过不断狭窄区间范围来逐步逼近函数的最小值点。因此,`fminbnd` 函数适用于求解单变量有界函数的最小值,但不能用于求解多变量函数的最小值、无界函数的最小值或非连续函数的最小值。

下面是一个使用 `fminbnd` 函数求解函数最小值的简单例子:

​​​​​​​

%定义符号变量t
syms t
x = log(cos(t));
y = cos(t)-t.*sin(t);
%x对t求导数,求导1次
dx_dt = diff(x,t)
%y对t求导数,求导1次
dy_dt = diff(y,t)
% 求方程的解,当x=-1的时候t等于多少
% 使用符号函数solve进行解答
% t的区间在[0,1.5]大于零
x=log(cos(t))==-1;
tt = abs(solve(x,t))
%代入到方程中,subs(函数,旧变量,新变量)
dx_dt = subs(dx_dt,t,tt)
dy_dt = subs(dy_dt,t,tt)
%最后得数,符号函数转换为具体的值用eval
eval(dx_dt./dy_dt)
% 定义一个函数fun = @(x) x.^2 - 2*x + 1;% 求解函数的最小值x1 = 0; % 区间x2 = 2; % 区间[x, fval] = fminbnd(fun, x1, x2);% 输出结果disp(x); %坐标xdisp(fval); %坐标y

在上述代码中,我们定义了一个函数 `fun`,它表示函数 f(x)=x^2-2x+1。然后,我们使用 `fminbnd` 函数求解该函数在区间 [0,2]内的最小值点。需要注意的是,为了确保函数的最小值在指定区间内,需要根据具体的问题选择合适的区间范围,并进行必要的验证和调整,以保证求解结果的准确性和稳定性。与fminbnd相似的是fminsearch解决多元函数极值问题,函数的参数相似,第一个是多元函数表达式,第二个是指定区间。

08微积分

⚪️   微积分是数学中的一个分支,主要研究函数的微分和积分微积分

                                      

导数(微分)

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

最后输出:

​​​​​​​

dx_dt =

-sin(t)/cos(t)


dy_dt =

- 2*sin(t) - t*cos(t)


tt =

 acos(exp(-1))
 acos(exp(-1))


dx_dt =

 -exp(1)*(1 - exp(-2))^(1/2)
 -exp(1)*(1 - exp(-2))^(1/2)


dy_dt =

 - 2*(1 - exp(-2))^(1/2) - exp(-1)*acos(exp(-1))
 - 2*(1 - exp(-2))^(1/2) - exp(-1)*acos(exp(-1))


ans =

    1.0995
    1.0995

                                      

积分

%被积函数表达式
f= @(x) exp(2.*x).*cos(x).^3;
% 积分方式一
disp('integral方法');
Q1 = integral(f, 0, 2*pi)
%积分方式2
disp('quad方法');
Q2 = quad(f, 0, 2*pi)

输出结果:

​​​​​​​

integral方法

Q1 =

   9.7054e+04

quad方法

Q2 =

   9.7054e+04

                                      

函数梯度

在数学中,梯度是一个向量,它的方向与函数值增加最快的方向相同,大小表示函数值增加最快的速率。在 MATLAB 中,可以使用符号工具箱和数值工具箱计算函数的梯度。

使用符号工具箱,可以对符号表达式进行梯度计算。可以使用 `gradient` 函数计算符号表达式的梯度向量。以下是一个示例代码,使用符号工具箱计算函数 f(x,y)=x^2+y^2$ 在点 (1,2)$处的梯度向量:

​​​​​​​

% 定义符号变量和函数
syms x y;
f = x^2 + y^2;

% 计算梯度
grad_f = gradient(f, [x, y]);

% 在点 (1,2) 处计算梯度向量
x0 = 1;
y0 = 2;
grad_f_val = subs(grad_f, [x, y], [x0, y0]);

% 输出结果[2,4]
disp([grad_f_val]) % 2 4

在这个代码中,我们首先定义了符号变量 `x` 和 `y`,以及函数 f(x,y)=x^2+y^2。然后,我们使用 `gradient` 函数计算了函数的梯度向量。最后,我们在点 (1,2) 处计算了梯度向量,并输出了结果。运行这个代码,可以得到函数 f(x,y)=x^2+y^2在点 (1,2) 处的梯度向量为 [2, 4]。

​​​​​​​09符号对象

⚪️ 符号运算使用--种特殊的数据类型,称为符号对象(SymbolicObject),用字

符串形式表达,但又不同于字符串( Char Array).符号运算中的变量、函数和表达式都是符号对象.

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

% 这是数值表达式
n = pi^2
% 数值转化为符号对象
a = sym(n)
% 定义符号变量以及符号计算表达式
syms x y c
d = x^3+2*y^2;
% 定义符号矩阵
A = [x,y;2*x,2*y]
% 符号变量x用符号c替代
A = subs(A,x,c)

从上面可以看出万物皆可符号,定义单个符号使用sym,多个使用syms

                                      

计算精度和数据类型转换

符号数值计算默认精度为32位十进制,是MATLAB数值计算的两倍,符号工具箱还提供了计算精度设置指令,可以定义任意精度的数值计算."vpa" 是 MATLAB 中的一个函数,它的全称是 "Variable Precision Arithmetic",中文翻译为"可变精度算术"。该函数可以用来进行高精度计算,避免由于浮点数运算带来的舍入误差。

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

% s为圆周率
s=pi
% 将数值计算精度设置为8位
digits(8)
% 求s的数值结果
x=vpa(s)
% 采用n位计算精度求s的数值结果
x=vpa(s,n)
%符号对象转换为双精度
double(s)
%符号对象转换为字符串
char(s)

输出结果:

​​​​​​​

s =

    3.1416

x =

3.1415927


x =

3.141592654


ans =

    3.1416


ans =

10符号矩阵和符号函数

⚪️   MATLAB大部分矩阵和数组运算符及指令都可以应用于符号矩阵,大部分MATLAB数学函数和逻辑关系运算也可用于符号对象.另外还有

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

                                      

符号矩阵

clear;
% 符号矩阵A
A = sym('[a,b;c,d]');
% B为A矩阵的逆
B = inv(A)
% 矩阵的运算
A./B
B.\A
A/B
B\A
% 求符号矩阵的特征值和特征向量
eig(A)

输出结果:

B =

[  d/(a*d - b*c), -b/(a*d - b*c)]
[ -c/(a*d - b*c),  a/(a*d - b*c)]


ans =

[ (a*(a*d - b*c))/d,         b*c - a*d]
[         b*c - a*d, (d*(a*d - b*c))/a]


ans =

[ (a*(a*d - b*c))/d,         b*c - a*d]
[         b*c - a*d, (d*(a*d - b*c))/a]


ans =

[ a^2 + b*c, b*(a + d)]
[ c*(a + d), d^2 + b*c]


ans =

[ a^2 + b*c, b*(a + d)]
[ c*(a + d), d^2 + b*c]


ans =

 a/2 + d/2 - (a^2 - 2*a*d + d^2 + 4*b*c)^(1/2)/2
 a/2 + d/2 + (a^2 - 2*a*d + d^2 + 4*b*c)^(1/2)/2       
        

符号函数

% f(x,y)=(x-y)^3
% g(x,y)=(x+y)^3
% 定义符号变量
syms x y;
%定义函数
f=(x-y)^3;
g=(x+y)^3;
%两个函数相乘
h = f*g
%展开多项式
hs = expand(h)
% 因式分解
hf = factor(hs)
%定义符号函数,自变量是x,y
fun = symfun(f*g,[x,y])
%符号计算替换无需使用subs方法
s = fun(x,x^2+x+1)
%合并同类项,变量x
scol = collect(s,x)
%化简
ssim = simplify(scol)
%最简形式
ssim =simple(scol)
% 数学公式的Latex输出
latex(ssim)
% 数学公式的C语言代码
ccode(ssim)
% 数学公式的matlab匿名函数代码

输出结果:

h =

(x + y)^3*(x - y)^3


hs =

x^6 - 3*x^4*y^2 + 3*x^2*y^4 - y^6


hf =

(x - y)^3*(x + y)^3


fun(x, y) =

(x + y)^3*(x - y)^3


s =

-(x^2 + 1)^3*(x^2 + 2*x + 1)^3


scol =

- x^12 - 6*x^11 - 18*x^10 - 38*x^9 - 63*x^8 - 84*x^7 - 92*x^6 - 84*x^5 - 63*x^4 - 38*x^3 - 18*x^2 - 6*x - 1


ssim =

-(x^2 + 1)^3*(x + 1)^6


ssim =

-(x^2 + 1)^3*(x + 1)^6


ans =

- {\left(x^2 + 1\right)}^3\, {\left(x + 1\right)}^6


ans =

  t0 = -pow(x*x+1.0,3.0)*pow(x+1.0,6.0);


ans = 

    @(x)-(x.^2+1.0).^3.*(x+1.0).^6

                                      

符号微积分

光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

% 定义符号变量
syms n x;
%定义表达式
f = (1+x/n)^n;
g = (-1)^n*x^n/n;
% 符号极限的计算,变量n趋于无穷
limit(f,n,inf)
% 离散求和,变量n从1到无穷
symsum(g,n,1,inf)

计算结果:

ans =

exp(x)


ans =

piecewise([x == -1, Inf], [abs(x) <= 1 and x ~= -1, -log(x + 1)])

从上述的几个例子可以看出,符号表达式在应用的时候更加的随意,之前的函数方法都没有变,变的是函数的表达式通过符号的形式进行表达,而不是变量,符号可以不用赋予具体的值就可以通过符号进行运算,而变量在最后是需要赋予具体的值才可以进行运算。

充电君会在第一时间给你带来最新、最全面的解读,别忘了三联一波哦。

                                          光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料

关注公众号:资源充电吧
回复:Chat GPT
充电君发你:免费畅享使用中文版哦
点击小卡片关注下,回复:IT

想要的资料全都有 

 文章来源地址https://www.toymoban.com/news/detail-490507.html

到了这里,关于光速上手matlab入门级学习必看matlab超长细练习matlab,福利分享Matlab全套资料的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [Git] Git零基础?带你快速入门,示例练习上手

    😚一个不甘平凡的普通人,致力于为Golang社区和算法学习做出贡献,期待您的关注和认可,陪您一起学习打卡!!!😘😘😘 🤗专栏:算法学习 🤗专栏:Go实战 💬个人主页:个人主页 参考学习资料:黑马程序员Git教程

    2024年02月05日
    浏览(39)
  • 快速上手MATLAB:科研、工程、数据分析,MATLAB入门(下)教你基础知识!分享《MATLAB初学者教程 MATLAB编程-菜鸟入门(清晰版)》

    1、《MATLAB完全学习手册(视频+课件+代码)》 2、《MATLAB入门》 3、《详解MATLAB在科学计算中的应用》 4、《案例二 MATLAB与Excel交互》 5、《MATLAB初学者教程 MATLAB编程-菜鸟入门(清晰版)》 6、《MATLAB常用函数参考 MATLAB函数汇总 精通MATLAB》 7、等等。。。。 前两天,我们在(

    2024年02月07日
    浏览(73)
  • Pandas光速入门-一文掌握数据操作

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 Pandas是Python的一个强大的数据分析库,是基于NumPy开发的。可以支持从各种格式的文件中导入数据,比如CSV、EXCEL、JSON、SQL等,并提供了两种数据结构Series和DataFr

    2023年04月18日
    浏览(43)
  • python机器学习入门之opencv的使用(超详细,必看)

    源码及图片请点赞关注收藏后私信博主要  opencv 广泛用于多种于计算机视觉和机器学习相关的算法 其用C++语言编写 ,主要接口也是C++语言 但也有 python等环境的接口 接下来我们着重介绍他的使用。 opencv python是一个用于解决计算机视觉问题的python库  opencv python与numpy兼容 数

    2024年02月15日
    浏览(36)
  • 【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战,适合新人入门

    项目链接合集(必看) 项目专栏合集https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 必看 A.机器学习系列入门系列[一]:基于鸢尾花的逻辑回归分类预测: 逻辑回归(Logistic regression,简称LR)虽然其中带有\\\"回归\\\"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领

    2023年04月17日
    浏览(86)
  • Python光速入门 - Flask轻量级框架

            FlASK是一个轻量级的WSGI Web应用程序框架,Flask的核心包括Werkzeug工具箱和Jinja2模板引擎,它没有默认使用的数据库或窗体验证工具,这意味着用户可以根据自己的需求选择不同的数据库和验证工具。Flask的设计理念是保持核心简单,同时提供强大的扩展性,用户

    2024年03月14日
    浏览(100)
  • 【iOS逆向与安全】iOS插件开发光速入门

    经过之前的学习,相信你已经能熟练的使用Frida-trace、IDA Pro等逆向工具。不过,仅仅到这肯定是不够的。接下来,学会把你逆向的结果打包成插件并运行,那iOS逆向,你也就真正的入门了。 把逆向的结果制作成插件并运行 mac系统 Xcode:插件开发工具 已越狱iOS设备:运行deb插

    2024年02月06日
    浏览(40)
  • Docker 快速上手学习入门教程

    目录 1、docker 的基础概念 2、怎样打包和运行一个应用程序? 3、如何对 docker 中的应用程序进行修改? 4、如何对创建的镜像进行共享? 5、如何使用 volumes 名称对容器中的数据进行存储?// 数据挂载 6、另一种挂载方式:目录挂载 7、实现容器之间的相互通信 8、使用 Docker

    2024年02月09日
    浏览(38)
  • TCL脚本语言光速入门教程,一篇就够了(超全查表)

             目录 引子:初见TCL 基本命令 置换命令 普通置换 变量置换 命令置换 反斜杠置换 其他置换 脚步命令 eval命令 source命令 语言命令 简单变量 数组变量 重构变量及其操作 补充概念 全局变量和局部变量 小结         最近突然遇到了要用TCL脚本语言操作的需求,

    2024年01月25日
    浏览(58)
  • 第5章:5.4.5 字符串数组的综合练习(MATLAB入门课程)

    ​讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 案例 1 : 下表左侧给出了四名同学在三次测试中的成绩数据,请对所有同学的测试成绩进行排名,并生成一

    2024年01月24日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包