【数据结构】八大排序算法

这篇具有很好参考价值的文章主要介绍了【数据结构】八大排序算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、直接插入排序

二、希尔排序

三、选择排序

 3.1、简单选择排序

 3.2、快速选择排序(Top K问题)

四、堆排序

五、冒泡排序

六、快速排序

  1、递归版本

     1.1 hoare 法

     1.2 挖坑法

     1.3 前后指针法

  2、非递归版本

  3、快速排序的优化

     3.1 三数取中

     3.2 小区间优化

七、归并排序

  1、递归版本

  2、非递归版本

八、计数排序

九、排序的比较:


一、直接插入排序

动图演示:

【数据结构】八大排序算法

思路:(1)首先先按一趟插入排序编写, 数组的最后一个元素为 end,将要插入数据就是临时数据tmp = a[end+1],如果 tmp 小于 end 位置的数据,就将 end 位置的数据往后挪到 end+1的位置,直到插入到里面;(2)再按整体插入排序,进行插入,假设第一次数组里面就一个数据,所以 end 位置就是0,然后结束条件就是小于 n-1,否则就越界。

注意:先保存一下 end+1 位置的数据,否则在挪动的时候,就会被覆盖。

【数据结构】八大排序算法

 【数据结构】八大排序算法

上面给出了两个动图演示,能更好的理解。

//插入排序    时间复杂度:O(N^2)
void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (tmp < a[end])
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

二、希尔排序

希尔排序可以缩小增量排序,又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成 几个 组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工 作。当到达 gap=1时,所有记录在统一组内排好序。 

【数据结构】八大排序算法

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就 会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好多树中给出的希尔排序的时间复杂度都不固定。
//希尔排序      时间复杂度:O(N^1.3)
void ShellSort(int* a, int n)
{
	//gap > 1 预排序
	//gap越大,大的数可以更快的到后面,小的数可以更快的到前面。越不接近有序。
	//gap越小,数据跳动越慢,越接近有序。
	//gap == 1 直接插入排序
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 2;
		//gap = gap / 3 + 1;
		for (int j = 0; j < gap; j++)//分gap组排序
		{
			for (int i = j; i < n - gap; i += gap)//每一个组进行插入排序
			{
				int end = i;
				int tmp = a[end + gap];
				while (end >= 0)
				{
					if (tmp < a[end])
					{
						a[end + gap] = a[end];
						end -= gap;
					}
					else
					{
						break;
					}
				}
				a[end + gap] = tmp;
			}
		}
	}
}

三、选择排序

 3.1、简单选择排序

动图演示:

【数据结构】八大排序算法

思路:设两个变量mini,maxi分别存最小数据位置的下标和最大位置数据的下标,每次遍历数组标记出最大数据的下标和最小位置数据的下标,分别将其与最后一个数据和开头数据进行交换。

//选择排序     时间复杂度:O(N^2)
//和直接插入排序相比,插入排序更好
//插入适应性很强,对于有序,局部有序,都能效率提升
void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int mini = begin, maxi = begin;
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
        //此时,已经选出了最大的,和最小的
		//位置交换
		Swap(&a[begin], &a[mini]);
		//begin跟maxi重叠了,第一步交换之后maxi位置变了
		if (maxi == begin)
		{
			maxi = mini;
		}
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}

注意:这种情况是特殊情况,最大值的位置(maxi)在 begin 处,交换完 a[begin] 和 a[mini] 时,此时 ,maxi 位置被交换到 mini 的位置了,所以 maxi 的位置发生了变化,需要我们处理一下 maxi 的位置。

 3.2、快速选择排序(Top K问题)

快速选择排序和快速排序算法有很大的相似之处,将问题的规模一次次的减小,直到求出最终解,时间复杂度为:O(N),且快速选择排序算法不要求数据有序。

目的:找到第K大的数

  1. 出口条件为left == right,并返回值;
  2. 对 left 到 right 区间进行快排操作,注意分界条件,与快排相同;
  3. 在递归调用时,我们不需要对左右两边都进行调用,只需要判断我们选择的数 k 在左边还是在右边,然后只调用 k 所在的区间即可。
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100;
int x[N];
int n, k;

int QuickSelect(int a[], int left, int right, int k) 
{
    if (left >= right)
    { 
        return a[k]; 
    }
    int mid = a[(left + right) / 2], i = left - 1, j = right + 1;
    while (i < j) 
    {
        while (a[++i] < mid);
        while (a[--j] > mid);
        if (i < j) 
            swap(a[i], a[j]);
    }
    if (j >= k) 
    { 
        return QuickSelect(a, left, j, k);
    }
    else 
    { 
        return QuickSelect(a, j + 1, right, k);
    }
}
int main() 
{
    cin >> n >> k;
    for (int i = 0; i < n; i++) 
        cin >> x[i];
    cout << QuickSelect(x, 0, 9, k - 1) << endl;
}

四、堆排序

堆排序是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆本文建的是大堆,排升序。

【数据结构】八大排序算法

//堆排序     时间复杂度:O(N*logN)
//交换
void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//向下调整
void AdjustDown(int* a, int n, int parent)//n为数组的大小
{
	int child = parent * 2 + 1;//左孩子
	while (child < n)
	{
		//确认child指向大的那个孩子
		if (child + 1 < n && a[child + 1] > a[child])//child+1 < n 右孩子存在的情况
		{
			++child;//默认指向左孩子,++child就指向右孩子
		}
		//孩子大于父亲,交换,继续向下调整
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;//孩子小于父亲,跳出循环
		}
	}
}
void HeapSort(int* a, int n)
{
	//向下调整建堆--- O(N) --- 好一点
	//升序:建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	//O(N*logN)
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

五、冒泡排序

动图演示:

【数据结构】八大排序算法

思路:前后数据进行对比,若前面数据大于后面的数据就交换,这样经过第一轮的排序,最大值就被换到了最后的位置,然后再进行第二轮排序,这样以此往复,第二大的数据被放到倒数第二的位置,直到所有数据排序完毕。

//冒泡排序    时间复杂度:O(N^2)
void BubbleSort(int* a, int n)
{
	for (int j = 0; j < n; j++)
	{
		int exchange = 0;
		for (int i = 1; i < n - j; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		//一趟冒泡过程中,没有发生交换,说明已经有序了,不需要进行处理
		if (exchange == 0)
		{
			break;
		}
	}
}

六、快速排序

基本思想为:任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右 子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

快速排序的阶段性结果特点:第 i 趟完成时,会有 i 个以上的数据出现在它最终要出现的位置。

  1、递归版本

     1.1 hoare 法

 动图演示:

【数据结构】八大排序算法

思路:(1)选取key位置,通常选在最开始的left位置(或最后面right位置)。

            (2)如果key选在left位置,则 right 先走,找到比 key 位置小的数据停下。

            (3)left 再走,找到比 key 位置大的数据停下。

            (4)交换 left 和 right 位置的数据,一直重复以上操作,直到left 和 right 相遇结束。

            (5)相遇结束后,此时交换 key 位置和 left 位置(就是相遇的位置)的数据, 这个时候相遇位置的左边的数据小于等于相遇位置的数据,右边的数据大于等于相遇位置的数据。所以,这个数据就调整到了它的正确位置。

//Hoare
int PartSort1(int* a, int begin, int end)
{
	int left = begin, right = end;
	int key = left;
	while (left < right)
	{
		//右边先走,找小
		while (left < right && a[right] >= a[key])//left < right条件是防止越界
		{
			right--;
		}
		//左边再走,找大
		while (left < right && a[left] <= a[key])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[left], &a[key]);
	key = left;
	return key;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort1(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

     1.2 挖坑法

 动图演示:

【数据结构】八大排序算法

思路:(1)把数组 left 位置的数据赋值给 key ,形成了第一个坑位 hole 就是 left 位置,要保存 key 位置的值。

           (2)right 先走,找到比 key 位置数据小的值,就停下,将此处的数据放到坑位 hole 中,此时right 位置就形成了新的坑位。

           (3)然后 left 再走,找到比 key 位置数据大的值,就停下,将此处的数据放到坑位 hole 中,此时,left 位置就形成新的坑位。

           (4)当 left 和 right 相遇时,将 key 位置的数据放入到坑位中,此时,key 数据就放到了正确的位置。

//挖坑法
int PartSort2(int* a, int begin, int end)
{
	int left = begin, right = end;
	int key = left;
	int hole = left;
	while (left < right)
	{
		//右边找小,填到左边的坑里面
		if (left < right && a[right] >= a[key])
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		//左边找大,填到右边的坑里面
		if (left < right && a[left] <= a[key])
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = a[key];
	return hole;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}

	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort2(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

     1.3 前后指针法

 动图演示:

【数据结构】八大排序算法

思路:(1)首先假设 key 是数组最开始位置,然后用前后指针法,prev 指向第一个元素,cur 指向第二个元素。

           (2)cur 先移动,找到比 key 位置数据小的停下。

           (3)++prev,交换 prev 与 cur 位置的数据。

           (4)当 cur 指向数组最后一个位置的下一个位置时,循环停止。

           (5)交换 key 下标与 prev 下标的数据。

//前后指针法
int PartSort3(int* a, int begin, int end)
{
	int prev = begin;
	int cur = begin + 1;
	int key = begin;
	while (cur <= end)
	{
		//找到比key小的值时,跟++prev位置交换,小的往前翻,大的往后翻
		while (a[cur] < a[key] && ++prev != cur)
        {
            //满足条件,进行交换
            Swap(&a[prev], &a[cur]);
        }
		cur++;
	}
	Swap(&a[key], &a[prev]);
	key = prev;
	return key;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 15)
	{
		//优化方法:小区间用直接插入替代,减少递归调用次数
		InsertSort(a + begin, end - begin + 1);
	}
	else
	{
		int key = PartSort3(a, begin, end);

		//[begin,key-1] key [key+1 , end] 三段位置
		QuickSort(a, begin, key - 1);
		QuickSort(a, key + 1, end);
	}
}

  2、非递归版本

思路:通过非递归的方式实现的话,我们要借助栈的内存结构让先入的后出,所以要先进 begin 再进 end,出的顺序就是先出右再出左再先排右边再排左边。

//非递归版本
void QuickSortNonR(int* a, int begin, int end)
{
	//借助栈实现非递归
	ST st;
	StackInit(&st);
	StackPush(&st, begin);
	StackPush(&st, end);
	while (!StackEmpty(&st))
	{
		int right = StackTop(&st);
		StackPop(&st);
		int left = StackTop(&st);
		StackPop(&st);

		int key = PartSort1(a, left, right);
		//[left,key-1] key [key+1,right]
		if (key + 1 < right)
		{
			StackPush(&st, key + 1);
			StackPush(&st, right);
		}
		if (left < key - 1)
		{
			StackPush(&st, left);
			StackPush(&st, key - 1);
		}
	}
	StackDestory(&st);
}

  3、快速排序的优化

     3.1 三数取中

三数取中是一种优化算法,为了防止 key 位置的数据是该数组中的最小值,进行一趟快速排序后,没有什么变化,我们采用的三数取中的方法,在一个数组中选取一个中间值作为 key ,来进行快速排序,这样的效率会大大的提升。

int GetMidIndex(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] < a[mid])
	{
		if (a[mid] < a[end])
		{
			return mid;
		}
		else if (a[begin] > a[end])
		{
			return begin;
		}
		else
		{
			return end;
		}
	}
	else  //a[begin] > a[mid]
	{
		if (a[mid] > a[end])
		{
			return mid;
		}
		else if (a[begin] > a[end])
		{
			return end;
		}
		else
		{
			return begin;
		}
	}
}

     3.2 小区间优化

快排的思想就是不断地分割小序列,然后再递归实现,它的每一层的递归次数以2倍的次数进行增长。当元素较多时以递归的方法实现是不错的,但是当序列元素较少时,再使用递归就没有必要了,我们可以选择使用其他的排序方法来实现小序列的排序。

void QuickSort1(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if ((end - begin + 1) < 10)
	{
		InsertSort(a, (end - begin + 1));
	}
	int mid = GetMidIndex(a, begin, end);
	swep(&a[begin], &a[mid]);
	int keyi = PartSort3(a, begin, end);
	QuickSort1(a, begin, keyi - 1);
	QuickSort1(a, keyi+1, end);
}

七、归并排序

  1、递归版本

 动图演示:

【数据结构】八大排序算法

归并的思想:

        归并排序是建立在 归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。
        将已有序的子序列合并,得到完全有序的序列;
        即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

【数据结构】八大排序算法

//归并排序    时间复杂度:O(N*logN)   空间复杂度:O(N)
void _MergeSort(int* a, int begin, int end, int* tmp)
{
	if (begin >= end)
	{
		return;
	}
	int mid = (begin + end) / 2;
	//[begin,mid]  [mid+1,end]  递归让子区间有序
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid + 1, end, tmp);

	//归并
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}

  2、非递归版本

 我们就控制每个区间就可以归并了,因为归并是二分。

【数据结构】八大排序算法

rangeN 表示:每组归并的数据个数。

//非递归归并排序
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	//归并每组数据个数,从1开始,因为1个认为是有序的,可以直接归并
	int rangeN = 1;
	while (rangeN < n)
	{
		for (int i = 0; i < n; i += rangeN * 2)
		{
			//[begin1,end1] [begin2,end2]  归并
			int begin1 = i, end1 = i + rangeN - 1;
			int begin2 = i + rangeN, end2 = i + 2 * rangeN - 1;
			int j = i;
			//end1  begin2 end2越界
			if (end1 >= n)
			{
				break;
			}
			else if (begin2 >= n)//begin2 end2 越界
			{
				break;
			}
			else if (end2 >= n)//end2 越界
			{
				//修正区间
				end2 = n - 1;
			}
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			//归并一部分,拷贝一部分
			memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
		}
		rangeN *= 2;
	}
	free(tmp);
	tmp = NULL;
}

注意:写代码时,需要严密的控制区间,要不然会发生溢出,导致程序崩溃。

有以下三种情况:(1)end1越界,begin2越界,end2越界;(2)begin2越界,end2越界;(3)end2越界

八、计数排序

计数排序的核心思想:其实就是映射,将待排序的数据通过映射,放到辅助空间相对应的位置,然后通过统计出现的次数,最后再放回原先的数组。

【数据结构】八大排序算法

//计数排序
void CountSort(int* a, int n)
{
	assert(a);
	int min = a[0];
	int max = a[0];
	for (int i = 1; i < n; ++i)
	{
		//求最大值和最小值
		if (a[i] < min)
			min = a[i];
		if (a[i] > max)
			max = a[i];
	}
	int range = max - min + 1;
	int* countArr = (int*)malloc(sizeof(int) * range);
	memset(countArr, 0, sizeof(int) * range);
	//统计次数
	for (int i = 0; i < n; ++i)
	{
		countArr[a[i] - min]++;
	}
	//排序
	int index = 0;
	for (int j = 0; j < range; ++j)
	{
		while (countArr[j]--)
		{
			//相对位置
			a[index++] = j + min;
		}
	}
	free(countArr);
}

九、排序的比较:

排序方法 时间复杂度 空间复杂度 稳定性
冒泡排序 稳定
选择排序 不稳定
插入排序 稳定
希尔排序 不稳定
堆排序 不稳定
归并排序 稳定
快速排序 不稳定
计数排序 【数据结构】八大排序算法 不稳定

本文要是有不足的地方,欢迎大家在下面评论,我会在第一时间更正。

【数据结构】八大排序算法文章来源地址https://www.toymoban.com/news/detail-490744.html

 老铁们,记着点赞加关注!!!  

到了这里,关于【数据结构】八大排序算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】八大排序之简单选择排序算法

    🦄 个人主页 :修修修也 🎏 所属专栏 :数据结构 ⚙️ 操作环境 : Visual Studio 2022 目录 一.简单选择排序简介及思路 二.简单选择排序的代码实现 三.简单选择排序的优化 四.简单选择排序的时间复杂度分析 结语 简单选择排序算法(Simple Selection Sort) 是一种简单直观的 选择排序算

    2024年02月01日
    浏览(62)
  • 【数据结构】 常见的八大排序算法

    排序有 内部排序和外部排序 ,内部排序是数据记录在内存中进行排序,这里八大排序就是内部排序,指直接插入,希尔,选择,堆排,冒泡,快排,归并,计数。 下面让我们来共同学习这八大排序吧!🤗🤗🤗 什么是外部排序: 外排序是数据量较大,内存放不下,数据放到外

    2024年02月12日
    浏览(58)
  • 【数据结构】--八大排序算法【完整版】

    本文主要讲解代码及代码思路,涵盖八大排序的全面知识点 ———————————————— 目录 一、直接插入排序 二、希尔排序(直接插入排序的改良版) 三、选择排序(直接选择排序) 四、堆排序 五、冒泡排序 六、快速排序 1、 左右指针法 2、挖坑法: 3、前后指针

    2024年02月16日
    浏览(30)
  • 第五章 数据结构与算法——八大排序

    目录 一、排序的概念及其运用 二、八大排序的原理及其实现(升序为例) (一)、直接插入排序 (二)、希尔排序(也叫缩小增量排序)(重要) 1.原理: 2.该排序一般分为两个步骤: 3.预排序过程: 4.预排序的意义(升序为例): 5.希尔排序的特点: 6.希尔排序代码实现

    2024年02月19日
    浏览(33)
  • 【数据结构初阶】八大排序算法+时空复杂度

    学会控制自己是人生的必修课 1.直接插入排序思想: 假设现在已经有一个有序序列,如果有一个数字插入到这段序列的末尾,我们会选择拿这个数和它前面的每个数字都比较一遍,如果前面的数字比他大,那我们就让前面的数字赋值到这个被插入的数字位置,依次与前面的数

    2024年02月01日
    浏览(58)
  • 【数据结构】八大排序算法(内含思维导图和画图分析)

    作者主页: paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《JAVA数据结构》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造,将javaSE基础知识一网打尽,希望可以帮到读者们哦。 其他专栏:

    2024年02月08日
    浏览(44)
  • 手把手教你 ,带你彻底掌握八大排序算法【数据结构】

    直接插入排序是一种简单的插入排序法,其基本思想:是把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 可以理解为一遍摸扑克牌,一边进行排序 在待排序的元素中,假设前面n-1(其中n=2)个数

    2024年02月02日
    浏览(35)
  • 直接插入排序、希尔排序、直接选择排序、堆排序、冒泡排序——“数据结构与算法”

    各位CSDN的uu们你们好呀,今天小雅兰的内容是数据结构与算法啦,是排序!!!下面,让我们进入七大排序的世界吧!!! 排序:所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在

    2024年02月15日
    浏览(43)
  • 【数据结构与算法】直接插入排序和希尔排序

    进入了初阶数据结构的一个新的主题——排序。所谓排序,就是一串记录, 按照其中的某几个或某些的大小(一定的规则) , 递增或递减排列起来的操作 。 排序的 稳定性 :在一定的规则下,两个值相等的元素,在排序算法处理前后的相对位置是否发生变化,如果相

    2024年04月13日
    浏览(33)
  • 【数据结构】详解七大排序算法(直接插入排序、希尔排序、直接选择排序、堆排序、冒泡排序、快速排序)

    1、基本思想    把待排序的数按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所以的记录插入完为止,得到一个新的有序序列。    实际中我们玩扑克牌时,就用到了插入排序的思想 基本步骤:    当插入第i个元素时,前面的arr[0]、arr[2]…arr

    2024年02月04日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包