工地临边防护缺失识别检测算法 opencv

这篇具有很好参考价值的文章主要介绍了工地临边防护缺失识别检测算法 opencv。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

工地临边防护缺失识别检测系统通过opencv+python网络模型技术,工地临边防护缺失识别检测算法检测到没有按照要求放置临边防护设备时,将自动发出警报提示现场管理人员及时采取措施。Python是一门解释性脚本语言,是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。Python是一门跨平台、脚本以及开发应用的编程语言,跨平台:跨平台概念是软件开发中一个重要的概念,即不依赖于操作系统,也不依赖硬件环境。一个操作系统(如Windows)下开发的应用,放到另一个操作系统(如Linux)下依然可以运行。 

OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。

Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。

工地临边防护缺失识别检测算法 opencv
 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。文章来源地址https://www.toymoban.com/news/detail-490927.html

到了这里,关于工地临边防护缺失识别检测算法 opencv的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

    🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉opencv的手势检测 手势识别 算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通机器视觉手势检测的基本流程如下: 其中轮廓的提取,多边形

    2024年02月07日
    浏览(81)
  • 【OpenCV-Python】——机器学习kNN算法&SVM算法&k均值聚类算法&深度学习图像识别&对象检测

    目录 前言: 1、机器学习 1.1 kNN算法 1.2 SVM算法(支持向量机)  1.3 k均值聚类算

    2024年02月05日
    浏览(49)
  • TSINGSEE青犀基于opencv的安全帽/反光衣/工作服AI检测算法自动识别及应用

    安全帽/反光衣/工作服自动识别检测算法可以通过opencv+yolo网络对现场画面中人员穿戴着装进行实时分析检测,判断人员是否穿着反光衣/安全帽。在应用场景中,安全帽/反光衣/工作服检测应用十分重要,通过对人员的规范着装进行实时监测与预警, 可以降低安全隐患,提高

    2024年02月03日
    浏览(61)
  • 基于OpenCV+LPR模型端对端智能车牌识别——深度学习和目标检测算法应用(含Python+Andriod全部工程源码)+CCPD数据集

    本项目基于CCPD数据集和LPR(License Plate Recognition,车牌识别)模型,结合深度学习和目标检测等先进技术,构建了一个全面的车牌识别系统,实现了从车牌检测到字符识别的端到端解决方案。 首先,我们利用CCPD数据集,其中包含大量的中文车牌图像,用于模型的训练和验证。

    2024年02月09日
    浏览(48)
  • 【OpenCV】 车辆识别 运动目标检测

    目录 一:车辆识别 运动目标检测 二:车辆识别实现 超详细步骤解析 步骤一:灰度化处理 步骤二:帧差处理 步骤三:二值化处理 步骤四:图像降噪 4-1 腐蚀处理 目的 去除白色噪点 4-2 膨胀处理 目的 把白色区域变大 步骤五:提取关键点 框选运动目标检测 三:车辆识别 完

    2024年02月04日
    浏览(50)
  • OpenCV 人脸识别、图片相似度检测

    识别出人脸后会得到两个人脸的 Rect 数组,然后比较这两个 Rect 数组的相似度即可! 实现步骤 ==== 工程目录准备 新建 Android Studio 项目  OpenCVCheck 导入 OpenCVLibrary320 在 module 下的 build.gradle 中引入 OpenCVLibrary 的编译: compile project(‘:openCVLibrary320’) 检测任意两张图片的相似度的

    2024年04月16日
    浏览(32)
  • 头歌--人脸识别系统--OpenCV人脸检测

    目录 第1关:图片基本操作 第2关:色彩空间及其转换 第3关:基于Harr特征的人脸检测分类器 第4关:绘制人脸与人眼区域 第1关:图片基本操作 第2关:色彩空间及其转换 第3关:基于Harr特征的人脸检测分类器 第4关:绘制人脸与人眼区域

    2024年02月05日
    浏览(54)
  • 软件杯 图像识别-人脸识别与疲劳检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于图像识别的人脸识别与疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.co

    2024年03月14日
    浏览(79)
  • 软件杯 深度学习 python opencv 火焰检测识别 火灾检测

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的火焰识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.co

    2024年03月24日
    浏览(47)
  • Python opencv进行圆形识别(圆检测)

    圆形识别(圆检测)是图像识别中很常见的一种处理方式,最核心的是cv2.HoughCircles这个函数实现的圆形检测。当然还有一些其他的处理过程,以下详述: 首先需要读取一个图像文件,将其作为一个变量 img是一个ndarray,2维结构,包含的是灰度化后的图像信息 img2是一个ndarr

    2024年02月03日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包