【Elasticsearch】全文搜索

这篇具有很好参考价值的文章主要介绍了【Elasticsearch】全文搜索。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

全文搜索是ES的关键特性之一,平时我们使用SQL的like语句,搜索一些文本、字符串是否包含指定的关键词,但是如果两篇文章,都包含我们的关键词,具体那篇文章内容的相关度更高? 这个SQL的like语句是做不到的,更别说like语句的性能问题了。

ES通过分词处理、相关度计算可以解决这个问题,ES内置了一些相关度算法,大体上思想就是,如果一个关键词在一篇文章出现的频率高,并且在其他文章中出现的少,那说明这个关键词与这篇文章的相关度很高。

分词的目的:

主要就是为了提取搜索关键词,理解搜索的意图,我们平时在百度搜索内容的时候,输入的内容可能很长,但不是每个字都对搜索有帮助,所以通过分词算法,我们输入的搜索关键词,会进一步分解成多个关键词,例如:搜索输入 “上海陆家嘴在哪里?”,分词算法可能分解出:“上海、陆家嘴、哪里”,具体会分解出什么关键词,跟具体的分词算法有关。

默认情况下,使用全文搜索很简单,只要将字段类型定义为text类型,然后用match语句匹配即可。

ES对于text类型的字段,在插入数据的时候,会进行分词处理,然后根据分词的结果索引文档,当我们搜索text类型字段的时候,也会先对搜索关键词进行分词处理、然后根据分词的结果去搜索。

ES默认的分词器是standard,对英文比较友好,
例如:hello world 会被分解成 hello和world两个关键词,如果是中文会分解成一个一个字,例如:上海大学 会分解成: 上、海、大、学。

在ES中,我们可以通过下面方式测试分词效果:

语法:

GET /_analyze
{
  "text": "需要分词的内容",
  "analyzer": "分词器"
}

例如:

GET /_analyze
{
  "text": "hello wolrd",
  "analyzer": "standard"
}

使用standard分词器,对hello world进行分词,下面是输出结果:

{
  "tokens" : [
    {
      "token" : "hello",
      "start_offset" : 0,
      "end_offset" : 5,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "wolrd",
      "start_offset" : 6,
      "end_offset" : 11,
      "type" : "<ALPHANUM>",
      "position" : 1
    }
  ]
}

token就是分解出来的关键词。

下面是对中文分词的结果:

GET /_analyze
{
  "text": "上海大学",
  "analyzer": "standard"
}

输出

{
  "tokens" : [
    {
      "token" : "上",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "海",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "大",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "学",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    }
  ]
}

明显被切割成一个个的字了。

中文关键词被分解成一个个的字的主要问题就是搜索结果可能不太准确。

例如:

搜索:上海大学

分词结果:上、海、大、学

下面的内容都会被搜到:

上海大学
海上有条船
上海有好吃的
这条船又大又好看
基本上包含这四个字的内容都会被搜到,区别就是相关度的问题,这里除了第一条是相关的,后面的内容基本上跟搜索目的没什么关系。文章来源地址https://www.toymoban.com/news/detail-491917.html

到了这里,关于【Elasticsearch】全文搜索的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch全文搜索引擎

    Elasticsearch全文搜索引擎 Elasticsearch简介 windows平台下安装ES 学习ES的预备知识 ES索引操作 ES文档操作 ES高级查询 Golang操作ES起步 Golang操作ES索引 Golang操作ES文档 Golang ES高级查询 Gin集成ES

    2024年02月09日
    浏览(49)
  • ElasticSearch中全文搜索(单词搜索、多次搜索、组合搜索和权重搜索)

    全文搜索两个最重要的方面是: 相关性(Relevance) 它是评价查询与其结果间的相关程度,并根据这种相关程度对结果排名的一种能力,这种计算方式可以是 TF/IDF 方法、地理位置邻近、模糊相似,或其他的某些算法。 分词(Analysis) 它是将文本块转换为有区别的、规范化的

    2024年02月06日
    浏览(46)
  • Elasticsearch的全文搜索与匹配

    Elasticsearch是一个开源的搜索和分析引擎,基于Lucene库,用于实现全文搜索和实时分析。它具有高性能、高可扩展性和高可用性,适用于大规模数据的搜索和分析。Elasticsearch的核心功能包括文档存储、搜索引擎、分析引擎和数据可视化。 Elasticsearch的全文搜索功能是其最重要的

    2024年02月22日
    浏览(44)
  • 关于Elasticsearch全文搜索引擎

    我们可以把它简称为ES,但是搜索它的资料时(例如百度)还是使用Elasticsearch进行搜索更准确, 这个软件不再是SpringCloud提供的,它也不针对微服务环境的项目来开发 Elasticsearch和redismysql一样,不仅服务于java语言,其它语言也可以使用,它的功能也类似一个数据库,能高效的从

    2024年02月05日
    浏览(61)
  • 全文搜索引擎 Elasticsearch详解

    Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎,适用于包括文本、数字、地理空间、结构化和非结构化数据等在内的所有类型的数据。Elasticsearch 在 Apache Lucene 的基础上开发而成,由 Elasticsearch N.V.(即现在的 Elastic)于 2010 年首次发布。Elasticsearch 以其简单的

    2023年04月22日
    浏览(43)
  • 全文搜索引擎 Elasticsearch 入门使用

    目录 1、安装 2、基本概念 2.1 Node 与 Cluster 2.2 Index 2.3 Document  2.4 Type 3、新建和删除 Index 4、中文分词设置  5、数据操作  5.1 新增记录  5.2 查看记录   5.3 删除记录 5.4 更新记录  6、数据查询 6.1 返回所有记录 6.2 全文搜索  6.3 逻辑运算 7、参考链接 本文从零开始,讲解如何

    2024年02月09日
    浏览(44)
  • 开源的全文搜索引擎Elasticsearch

    Elasticsearch是一个开源的全文搜索引擎,可以实现快速、实时的数据搜索和分析。它是基于Apache Lucene的搜索引擎库开发而来,提供了一个分布式、多租户的全文搜索引擎平台,能够支持海量数据的实时检索、聚合分析和可视化展示。 Elasticsearch 的主要特点包括: 分布式架构:

    2024年02月08日
    浏览(49)
  • Elasticsearch 全文搜索引擎 ---- IK分词器

            原理:分词的原理:二叉树                  首先讲一下为什么要出这个文章,前面我们讲过分词方法: 中文分词搜索 pscws (感兴趣的同学可以去爬楼看一下),那为什么要讲 IK分词 ?最主要的原因是:pscws分词 颗粒度 不如IK分词的颗粒度高,现在的需求

    2024年02月10日
    浏览(52)
  • Elasticsearch的全文搜索和自然语言处理

    Elasticsearch是一个开源的搜索和分析引擎,基于Lucene库,具有高性能、可扩展性和实时性。它广泛应用于企业级搜索、日志分析、实时数据处理等领域。本文将涵盖Elasticsearch的全文搜索和自然语言处理相关知识,包括核心概念、算法原理、最佳实践和实际应用场景。 2.1 Elast

    2024年02月21日
    浏览(46)
  • Spark与Elasticsearch的集成与全文搜索

    Apache Spark和Elasticsearch是在大数据处理和全文搜索领域中非常流行的工具。在本文中,将深入探讨如何在Spark中集成Elasticsearch,并演示如何进行全文搜索和数据分析。将提供丰富的示例代码,以便更好地理解这一集成过程。 在开始集成之前,首先了解一下Spark和Elasticsearch的基

    2024年02月02日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包