YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8

这篇具有很好参考价值的文章主要介绍了YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对象检测彻底改变了机器感知和解释人类世界的方式。这是计算机视觉中一项特别关键的任务,使机器能够识别和定位图像或视频中的物体。如自动驾驶汽车、面部识别系统等。推动对象检测进步的一个关键因素是发明了神经网络架构。强大的神经网络推动了对象检测的进步,增强了计算机视觉的能力。特别是,Faster R-CNN和YOLO等架构在塑造现代物体检测架构方面发挥了重要作用。

YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8

YOLO代表You Only Look Once,是最流行和最成功的物体检测方法之一。YOLO的第一个版本于2016年推出,通过将对象检测视为单个回归问题,改变了对象检测的执行方式。它将图像划分为网格,同时预测边界框和类概率。虽然它比以前的物体检测方法更快,但YOLOv1在检测小物体方面有局限性。自从第一个YOLO架构出现以来,已经开发了几种基于YOLO的架构,YOLOv6、YOLOv7和YOLOv8是YOLO家族目前最先进的型号。

YOLO-NAS对象检测算法

YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8

新的YOLO-NAS以无与伦比的精度-速度性能提供最先进的(SOTA)性能,优于YOLOv5、YOLOv6、YOLOv7和YOLOv8等其他型号。现有的YOLO模型面临限制,如量化支持不足和准确性延迟权衡不足。YOLO-NAS模型在包括COCO、Objects365和Roboflow 100在内的知名数据集上进行文章来源地址https://www.toymoban.com/news/detail-492090.html

到了这里,关于YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO-NAS讲解

    2024年02月03日
    浏览(35)
  • Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

    使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片 安装包: 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision 下载 YOLO_NAS_S 模型的权重文件,并加载模型 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理 使

    2024年02月10日
    浏览(48)
  • (数据结构)栈的实现——再一次保姆级教学

    目录 1. 栈 ​编辑  1.2 栈的实现 2. 代码的实现 2.1 初始化栈和销毁栈 2.2栈顶元素的插入 2.3栈顶元素的删除 栈元素删除 2.4栈顶元素的获取和栈元素的个数 1.1 栈的概念和结构 栈(Stack)是一种 线性 存储结构,它具有如下特点: (1)栈中的数据元素遵守” 先进后出 ”(First In

    2024年02月06日
    浏览(43)
  • 使用OpenCV进行YOLO对象检测

    点击上方“ 小白学视觉 ”,选择加\\\" 星标 \\\"或“ 置顶 ” 什么是YOLO? YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为回归问题完成的,并提供检测到的图像的类别概率。YOLO 算法采用卷积神经网络

    2023年04月21日
    浏览(44)
  • 论文解读 | YOLO系列开山之作:统一的实时对象检测

    原创 | 文 BFT机器人  01 摘要 YOLO是一种新的目标检测方法,与以前的方法不同之处在于它将目标检测问题视为回归问题,同时预测边界框和类别概率。这一方法使用单个神经网络,可以从完整图像中直接预测目标边界框和类别概率,实现端到端的性能优化。 YOLO的速度非常快

    2024年02月05日
    浏览(55)
  • 深度学习|目标检测与YOLO算法

    目标检测(object detection)是在给定的图片中精确找到物体所在位置,并标注出物体的类别。物体的尺寸变化范围很大,摆放物体的角度、姿态不确定,而且可以出现在图片任何地方,同时物体也可是多个类别的。 目标检测在多个领域中被广泛使用。例如,在无人驾驶领域,

    2024年02月04日
    浏览(49)
  • 目标检测算法:YOLO v1论文解读

    前言 ​ 其实网上已经有很多很好的解读各种论文的文章了,但是我决定自己也写一写,当然,我的主要目的就是帮助自己梳理、深入理解论文,因为写文章,你必须把你所写的东西表达清楚而正确,我认为这是一种很好的锻炼,当然如果可以帮助到网友,也是很开心的事情

    2024年02月07日
    浏览(49)
  • 揭秘YOLO:深入理解目标检测的神奇算法

    目标检测,就像电影中的侦探找寻线索,让计算机能够发现并识别图像中的物体。在目标检测领域,YOLO(You Only Look Once)算法犹如一位神奇的探险家,通过一瞥就能洞察图像的奥秘。本篇博客将深入解析YOLO算法,让我们一同揭秘这场目标检测的冒险之旅。 首先,让我们认识

    2024年02月21日
    浏览(36)
  • YOLO系列目标检测算法-YOLOv6

    YOLO系列目标检测算法目录 - 文章链接 YOLO系列目标检测算法总结对比- 文章链接 YOLOv1- 文章链接 YOLOv2- 文章链接 YOLOv3- 文章链接 YOLOv4- 文章链接 Scaled-YOLOv4- 文章链接 YOLOv5- 文章链接 YOLOv6 - 文章链接 YOLOv7- 文章链接 PP-YOLO- 文章链接 PP-YOLOv2- 文章链接 YOLOR- 文章链接 YOLOS- 文章链

    2023年04月08日
    浏览(48)
  • 改进 YOLO V5 的密集行人检测算法研究(论文研读)——目标检测

    针对在人员密集区或相互拥挤场景下进行的行人目标检测时,因行人遮挡或人像交叠所导致的跟踪目标丢失、检测识别率低的问题,提出了一种融合注意力机制的改进 YOLO V5 算法。 通过引入注意力机制来深入挖掘特征通道间关系和特征图空间信息,进一步增强了对行人目标可

    2024年02月01日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包