【数据管理架构】什么是 OLAP?

这篇具有很好参考价值的文章主要介绍了【数据管理架构】什么是 OLAP?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作为数据仓库实施的核心组件,OLAP 为商业智能 (BI) 和决策支持应用程序提供快速、灵活的多维数据分析。

什么是 OLAP?


OLAP(用于在线分析处理)是一种软件,用于对来自数据仓库、数据集市或其他一些统一的集中式数据存储的大量数据进行高速多维分析。

大多数业务数据都有多个维度——数据被分解为多个类别以进行展示、跟踪或分析。例如,销售数据可能具有与位置(地区、国家、州/省、商店)、时间(年、月、周、日)、产品(服装、男/女/童、品牌、类型)相关的多个维度,和更多。

但在数据仓库中,数据集存储在表中,每个表一次只能将数据组织到其中两个维度中。OLAP 从多个关系数据集中提取数据并将其重新组织成多维格式,从而实现非常快速的处理和非常有洞察力的分析。

什么是 OLAP 多维数据集?


大多数 OLAP 系统的核心,OLAP 多维数据集是一个基于数组的多维数据库,与传统的关系数据库相比,它可以更快、更高效地处理和分析多个数据维度。

关系数据库表的结构类似于电子表格,以二维、逐列的格式存储各个记录。数据库中的每个数据“事实”都位于两个维度(行和列)的交集处,例如区域和总销售额。

SQL 和关系数据库报告工具当然可以查询、报告和分析存储在表中的多维数据,但随着数据量的增加,性能会降低。并且需要大量的工作来重新组织结果以专注于不同的维度。

这就是 OLAP 多维数据集的用武之地。OLAP 多维数据集通过附加层扩展了单个表,每个层都添加了额外的维度——通常是维度的“概念层次结构”中的下一个级别。例如,立方体的顶层可能按地区组织销售;附加层可以是国家、州/省、城市甚至特定商店。

理论上,一个立方体可以包含无数层。(代表三个以上维度的 OLAP 多维数据集有时称为超多维数据集。)更小的多维数据集可以存在于层内——例如,每个商店层可以包含按销售人员和产品安排销售的多维数据集。在实践中,数据分析师将创建仅包含他们需要的层的 OLAP 多维数据集,以实现最佳分析和性能。

【数据管理架构】什么是 OLAP?

OLAP 多维数据集支持四种基本类型的多维数据分析:

向下钻取


向下钻取操作通过以下两种方法之一将不太详细的数据转换为更详细的数据——在概念层次结构中向下移动或向多维数据集添加新维度。例如,如果您查看组织日历或财政季度的销售数据,您可以向下钻取以查看每个月的销售额,在“时间”维度的概念层次结构中向下移动。

卷起


上卷与下钻功能相反——它通过在概念层次结构中向上移动或通过减少维数来聚合 OLAP 多维数据集上的数据。例如,您可以通过查看每个国家的数据而不是每个城市的数据,在“位置”维度的概念层次结构中向上移动。

切片和骰子(Slice and dice)


切片操作通过从主 OLAP 多维数据集中选择单个维度来创建子多维数据集。例如,您可以通过突出显示组织的第一个财政或日历季度(时间维度)的所有数据来执行切片。

骰子操作通过在主 OLAP 多维数据集中选择多个维度来隔离子多维数据集。例如,您可以通过按组织的日历或财政季度(时间维度)以及美国和加拿大内部(位置维度)突出显示所有数据来执行掷骰子操作。

枢 (Pivot)


pivot 函数旋转当前的多维数据集视图以显示数据的新表示 - 启用数据的动态多维视图。OLAP 数据透视表功能与电子表格软件(如 Microsoft Excel)中的数据透视表功能相当,但虽然 Excel 中的数据透视表可能具有挑战性,但 OLAP 数据透视表相对更易于使用(需要较少的专业知识)并且具有更快的响应时间和查询性能。

MOLAP 与 ROLAP 与 HOLAP

MOLAP


直接与多维 OLAP 多维数据集一起工作的 OLAP 称为多维 OLAP 或 MOLAP。同样,对于大多数用途,MOLAP 是最快和最实用的多维数据分析类型。

但是,在某些情况下,还有两种其他类型的 OLAP 可能更可取:

ROLAP


ROLAP 或关系 OLAP 是一种多维数据分析,它直接对关系表上的数据进行操作,而无需先将数据重新组织到一个多维数据集中。

如前所述,SQL 是用于多维查询、报告和分析的完美工具。但是所需的 SQL 查询很复杂,性能可能会拖累,并且生成的数据视图是静态的——它不能被旋转以表示不同的数据视图。当直接处理大量数据的能力比性能和灵活性更重要时,ROLAP 是最佳选择。

HOLAP


HOLAP 或混合 OLAP 尝试在单个 OLAP 体系结构内创建关系数据库和多维数据库之间的最佳分工。关系表包含大量数据,OLAP 多维数据集用于聚合和推测处理。HOLAP 需要同时支持 MOLAP 和 ROLAP 的 OLAP 服务器。

HOLAP 工具可以“钻取”数据立方体到关系表,这为快速数据处理和灵活访问铺平了道路。这种混合系统可以提供更好的可扩展性,但在访问关系数据源时无法避免不可避免的减速。此外,其复杂的架构通常需要更频繁的更新和维护,因为它必须存储和处理来自关系数据库和多维数据库的所有数据。出于这个原因,HOLAP 最终可能会变得更加昂贵。

OLAP 与 OLTP


在线事务处理(OLTP)是指专注于面向事务的数据和应用程序的数据处理方法和软件。

OLAP 和 OLTP 的主要区别在于名称:OLAP 本质上是分析性的,而 OLTP 是事务性的。

OLAP 工具设计用于对数据仓库中的数据进行多维分析,其中包含交易数据和历史数据。事实上,OLAP 服务器通常是数据仓库解决方案的中间分析层。OLAP 的常见用途包括数据挖掘和其他商业智能应用程序、复杂的分析计算和预测场景,以及财务分析、预算和预测计划等业务报告功能。

OLTP 旨在通过尽可能快速准确地处理最近的事务来支持面向事务的应用程序。OLTP 的常见用途包括 ATM、电子商务软件、信用卡支付处理、在线预订、预订系统和记录保存工具。

要深入了解这些方法之间的差异,请查看“OLAP 与 OLTP:有什么区别?”

OLAP 和云架构


OLAP 使公司能够通过将其转换为最实用的多维分析格式来最大限度地发挥其公司数据的潜力。这反过来又使识别有价值的业务洞察变得更加容易。但是,如果将这些系统保留在内部,则会限制扩展的潜力。

基于云的 OLAP 服务更便宜且更易于设置,这使得它们对预算有限的小型企业或初创公司更具吸引力。企业可以利用基于云的数据仓库的巨大潜力,以无与伦比的速度执行复杂的分析,因为它们使用大规模并行处理 (MPP)。因此,公司可以在云速度和规模上使用 OLAP,分析大量数据,而无需将其从云数据仓库中移出。

Constance Hotels、Resorts & Golf 是一家豪华酒店集团,在印度洋的岛屿上拥有九家酒店。然而,缺乏岛与岛之间的通信让位于组织孤岛,每个度假村的业务数据都是孤立的。该组织构建了一个云数据仓库和分析架构,以将所有本地系统和工具与基于云的中央数据存储库链接起来。在此过程中,公司获得了利用高级预测分析和实施 OLAP 系统所需的全集团洞察力。

云架构中的 OLAP 是面向未来构建的快速且经济高效的解决方案。制作多维数据集后,团队可以使用现有的商业智能工具即时连接 OLAP 模型,并从他们的云数据中获取交互式实时洞察。

本文 :https://architect.pub/what-olap
讨论:知识星球【首席架构师圈】或者加微信小号【ca_cto】或者加QQ群【792862318】
公众号
 
【jiagoushipro】
【超级架构师】
精彩图文详解架构方法论,架构实践,技术原理,技术趋势。
我们在等你,赶快扫描关注吧。
微信小号
 
【ca_cea】
50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化.
 
QQ群
 
【285069459】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。
加QQ群,有珍贵的报告和干货资料分享。
视频号 【超级架构师】
1分钟快速了解架构相关的基本概念,模型,方法,经验。
每天1分钟,架构心中熟。
知识星球 【首席架构师圈】向大咖提问,近距离接触,或者获得私密资料分享。  
喜马拉雅 【超级架构师】路上或者车上了解最新黑科技资讯,架构心得。 【智能时刻,架构君和你聊黑科技】
知识星球 认识更多朋友,职场和技术闲聊。 知识星球【职场和技术】
领英 Harry https://www.linkedin.com/in/architect-harry/
领英群组 领英架构群组 https://www.linkedin.com/groups/14209750/
微博‍‍ 【超级架构师】 智能时刻‍
哔哩哔哩 【超级架构师】
抖音 【cea_cio】超级架构师
快手 【cea_cio_cto】超级架构师
小红书 【cea_csa_cto】超级架构师  
网站 CIO(首席信息官) https://cio.ceo
网站 CIO,CTO和CDO https://cioctocdo.com
网站 架构师实战分享 https://architect.pub   
网站 程序员云开发分享 https://pgmr.cloud
网站 首席架构师社区 https://jiagoushi.pro
网站 应用开发和开发平台 https://apaas.dev
网站 开发信息网 https://xinxi.dev
网站 超级架构师 https://jiagou.dev
网站 企业技术培训 https://peixun.dev
网站 程序员宝典 https://pgmr.pub    
网站 开发者闲谈 https://blog.developer.chat
网站 CPO宝典 https://cpo.work
网站 首席安全官 https://cso.pub    ‍
网站 CIO酷 https://cio.cool
网站 CDO信息 https://cdo.fyi
网站 CXO信息 https://cxo.pub

谢谢大家关注,转发,点赞和点在看。文章来源地址https://www.toymoban.com/news/detail-492126.html

到了这里,关于【数据管理架构】什么是 OLAP?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据仓库—主数据管理

    在当今信息爆炸的时代,数据已经成为企业最重要的资产之一。然而,许多企业在管理数据时面临着挑战,其中之一就是处理不同系统中的数据不一致问题。主数据管理(Master Data Management,MDM)就是为了解决这一问题而诞生的。 在说主数据之前,我们先提一下元数据,因为

    2024年04月14日
    浏览(29)
  • 数据仓库与事务管理

    随着大数据时代的到来,数据仓库已成为企业决策和支持业务发展的重要工具。然而,关于数据仓库是否面向事务处理,一直存在争议。本文将围绕这一话题展开讨论,重点阐述数据仓库的特点、优缺点以及面向事务处理的技术和应用。 数据仓库是用于存储、管理和分析大量

    2024年02月11日
    浏览(42)
  • 元数据管理在数据仓库中的实践应用

    元数据(Metadata),又称中介数据、中继数据,为描述数据的数据(data about data)。 抽象的描述:一组用于描述数据的数据组,该数据组的一切信息都描述了该数据的某方面特征,则该数据组即可被称为元数据。 举几个简单例子: 如果一本书是一个“数据\\\",那么它的书名、封

    2024年01月24日
    浏览(30)
  • Docker数据管理与搭建私有仓库

    特点 数据卷存在于宿主机的文件系统中,独立于容器,与容器的生命周期是分离的。 数据卷可以是目录,也可以是文件,容器可以利用数据卷与宿主机进行数据共享,实现容器间的数据共享和交换。 容器启动初始化时,如果容器使用的镜像包含了数据,这些数据会拷贝到数

    2024年02月22日
    浏览(29)
  • Docker镜像、容器、仓库及数据管理

    使用docker pull命令,使用docker search命令可以搜索远端仓库中共享的镜像。 使用docker run [OPTIONS] IMAGE [COMMAND] [ARG...]命令,如:docker run --name ubuntu_test --rm -it ubuntu:test /bin/bash,其中选项如下: --name 指定容器名。 --rm 表示容器退出后将其删除。 -t选项让Docker分配一个伪终端并绑定

    2024年02月09日
    浏览(40)
  • 【参天引擎】华为参天引擎内核架构源码架构,多线程服务,数据节点管理,多节点间元数据管理

    ​ 专栏内容 : 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构,以及如何实现多机的数据库节点的多读多写,与传统主备,MPP的区别,技术难点的分析,数据元数据同步,多主节点的情况下对故障容灾的支持。 手写数据库toadb 本专栏主要介绍如何从零开发,开发的

    2024年02月03日
    浏览(36)
  • 【数据管理】什么是数据管理?

    数据管理,即对数据资源的管理。按照 DAMA (国际数据管理协会)的定义:「数据资源管理,致力于发展处理企业数据生命周期的适当的建构、策略、实践和程序。」这是一个高层而包含广泛的定义,而并不一定直接涉及数据管理的具体操作(如关系数据库的技术层次上的管

    2024年02月11日
    浏览(27)
  • 【数据架构】Data Fabric 架构是实现数据管理和集成现代化的关键

    DA 领导者应该了解数据编织架构的关键支柱,以实现机器支持的数据集成。 在日益多样化、分布式和复杂的环境中,数据管理敏捷性已成为组织的任务关键优先事项。为了减少人为错误和总体成本,数据和分析 (DA) 领导者需要超越传统的数据管理实践,转向现代解决方案,例

    2024年02月16日
    浏览(40)
  • 设计模式大作业小型仓库管理系统【带数据库+文档】

    目录 功能基本描述: 登录功能 货物入库功能 货物出库功能 修改个人信息功能 系统详细设计 单例模式 原型模式 代理模式 观察者模式 备忘录模式 课程设计总结 源代码+数据库+文档: 软件设计模式大作业小型仓库管理系统【带数据库+文档】-Java文档类资源-CSDN下载 系统所用

    2024年02月09日
    浏览(53)
  • 第四单元 管理数据库架构

    EF Core 提供两种主要方法来保持 EF Core 模型和数据库架构同步。至于我们应该选用哪个方法,请确定你是希望以 EF Core 模型为准还是以数据库为准。 如果希望以 EF Core 模型为准,请使用 迁移 。 对 EF Core 模型进行更改时,此方法会以增量方式将相应架构更改应用到数据库,以

    2024年02月05日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包