0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。
🚀详情:机器学习强基计划(附几十种经典模型源码)
1 稀疏表示与稀疏编码
类比真实的《现代汉语字典》,其中约有3500个常用字,而一篇文档可能只使用了其中15%的字,若将每个文档看作一个样本,每个字作为一个特征,字在文档中出现的频率作为特征取值,那么一篇文档的特征向量约有85%的零元素。但不同主题的文档使用的主要词汇可能相差很大(比如古风诗词和科幻小说),导致稀疏分布不同文章来源:https://www.toymoban.com/news/detail-492184.html
因此稀疏表示不会掩盖真实特征,相反&#x文章来源地址https://www.toymoban.com/news/detail-492184.html
到了这里,关于机器学习强基计划9-1:图解匹配追踪(MP)与正交匹配追踪(OMP)算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!