深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码

这篇具有很好参考价值的文章主要介绍了深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.数据集简介
2.模型相关知识
3.split_data.py——训练集与测试集划分
4.model.py——定义ResNet34网络模型
5.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数
6.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

一、数据集简介

1.自建数据文件夹

首先确定这次分类种类,采用爬虫、官网数据集和自己拍照的照片获取5类,新建个文件夹data,里面包含5个文件夹,文件夹名字取种类英文,每个文件夹照片数量最好一样多,五百多张以上。如我选了雏菊,蒲公英,玫瑰,向日葵,郁金香5类,如下图,每种类型有600~900张图像。如下图

花数据集下载链接https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码
2.划分训练集与测试集

这是划分数据集代码,同一目录下运,复制改文件夹路径。

import os
from shutil import copy
import random


def mkfile(file):
    if not os.path.exists(file):
        os.makedirs(file)


# 获取 photos 文件夹下除 .txt 文件以外所有文件夹名(即3种分类的类名)
file_path = 'data/flower_photos'
flower_class = [cla for cla in os.listdir(file_path) if ".txt" not in cla]

# 创建 训练集train 文件夹,并由3种类名在其目录下创建3个子目录
mkfile('flower_data/train')
for cla in flower_class:
    mkfile('flower_data/train/' + cla)

# 创建 验证集val 文件夹,并由3种类名在其目录下创建3个子目录
mkfile('flower_data/val')
for cla in flower_class:
    mkfile('flower_data/val/' + cla)

# 划分比例,训练集 : 验证集 = 9 : 1
split_rate = 0.1

# 遍历3种花的全部图像并按比例分成训练集和验证集
for cla in flower_class:
    cla_path = file_path + '/' + cla + '/'  # 某一类别动作的子目录
    images = os.listdir(cla_path)  # iamges 列表存储了该目录下所有图像的名称
    num = len(images)
    eval_index = random.sample(images, k=int(num * split_rate))  # 从images列表中随机抽取 k 个图像名称
    for index, image in enumerate(images):
        # eval_index 中保存验证集val的图像名称
        if image in eval_index:
            image_path = cla_path + image
            new_path = 'flower_data/val/' + cla
            copy(image_path, new_path)  # 将选中的图像复制到新路径

        # 其余的图像保存在训练集train中
        else:
            image_path = cla_path + image
            new_path = 'flower_data/train/' + cla
            copy(image_path, new_path)
        print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="")  # processing bar
    print()

print("processing done!")

二、模型相关知识

之前有文章介绍模型,如果不清楚可以点下链接转过去学习。

深度学习卷积神经网络CNN之ResNet模型网络详解说明(超详细理论篇)

深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码

三、model.py——定义ResNet34网络模型

这里还是直接复制给出原模型,不用改参数。模型包含34、50、101模型

import torch.nn as nn
import torch


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    """
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
    """
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()

        width = int(out_channel * (width_per_group / 64.)) * groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self,
                 block,
                 blocks_num,
                 num_classes=1000,
                 include_top=True,
                 groups=1,
                 width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.groups = groups
        self.width_per_group = width_per_group

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def resnext50_32x4d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def resnext101_32x8d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

四、train.py——训练,计算损失值loss,计算accuracy,保存训练好的网络参数

第一步,提前下载权重链接,复制链接网址打开直接下载,下载完,放在同一个工程文件夹,记得修改个名字,后面要用。

ResNet34权重链接https://download.pytorch.org/models/resnet34-333f7ec4.pth

第二步 71行类数、63行之前下载权重文件名字、83行保存最终权重文件名字

net.fc = nn.Linear(in_channel, 5)//修改5类的5
model_weight_path = "./resnet34-pre.pth"
save_path = './resNext34.pth'

其他参数bach_size=16;(根据cpu或GPU性能选择32、64等)
学习率 0.01
epoch 5

import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
from model import resnet34,resnet101


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "zjdata", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 16
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
    
    net = resnet34()
    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    for param in net.parameters():
        param.requires_grad = False

    # change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)

    # define loss function
    loss_function = nn.CrossEntropyLoss()

    # construct an optimizer
    params = [p for p in net.parameters() if p.requires_grad]
    optimizer = optim.Adam(params, lr=0.01)

    epochs = 5
    best_acc = 0.0
    save_path = './resNext34.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()

训练开始截图,我是用CPU训练
深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码

六、predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

注意图片位置和权重参数名字

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import resnet34


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "./1.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = resnet34(num_classes=5).to(device)

    # load model weights
    weights_path = "./resNext34.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    # prediction
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

预测结果截图
深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码文章来源地址https://www.toymoban.com/news/detail-492239.html

到了这里,关于深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习图像分类实战——pytorch搭建卷积神经网络(AlexNet, LeNet, ResNet50)进行场景图像分类(详细)

    目录 1  一、实验过程 1.1  实验目的 1.2  实验简介 1.3  数据集的介绍 1.4  一、LeNet5网络模型 1.5  二、AlexNet网络模型 1.6  三、ResNet50(残差网络)网络模型  二、实验代码 导入实验所需要的库  参数配置 数据预处理 重新DataSet 加载数据转为DataLoader函数 可视化一批训练

    2024年02月05日
    浏览(48)
  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(35)
  • 深度学习实战34-基于paddle关键信息抽取模型训练的全流程

    大家好,我是微学AI,今天我给大家介绍一下深度学习实战34-基于paddle关键信息抽取模型训练的全流程,我们在文档应用场景中,存在抽取关键信息的任务,比如身份证里的姓名和地址,快递单里的姓名和联系方式等等。传统的方法需要设计模板,但是这太繁琐了,也不够强

    2024年02月07日
    浏览(38)
  • Pytorch迁移学习使用Resnet50进行模型训练预测猫狗二分类

    目录   1.ResNet残差网络 1.1 ResNet定义  1.2 ResNet 几种网络配置  1.3 ResNet50网络结构 1.3.1 前几层卷积和池化 1.3.2 残差块:构建深度残差网络 1.3.3 ResNet主体:堆叠多个残差块 1.4 迁移学习猫狗二分类实战 1.4.1 迁移学习 1.4.2 模型训练 1.4.3 模型预测   深度学习在图像分类、目标检

    2024年02月16日
    浏览(28)
  • 【超详细小白必懂】Pytorch 直接加载ResNet50模型和参数实现迁移学习

    Torchvision.models包里面包含了常见的各种基础模型架构,主要包括以下几种:(我们以ResNet50模型作为此次演示的例子) AlexNet VGG ResNet SqueezeNet DenseNet Inception v3 GoogLeNet ShuffleNet v2 MobileNet v2 ResNeXt Wide ResNet MNASNet 首先加载ResNet50模型,如果如果需要加载模型本身的参数,需要使用

    2024年02月16日
    浏览(31)
  • pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

    目录 1.迁移学习概念 2.数据预处理  3.训练模型(基于迁移学习) 3.1选择网络,这里用resnet 3.2如果用GPU训练,需要加入以下代码 3.3卷积层冻结模块 3.4加载resnet152模 3.5解释initialize_model函数 3.6迁移学习网络搭建 3.7优化器 3.8训练模块(可以理解为主函数) 3.9开始训练 3.10微调

    2024年02月14日
    浏览(32)
  • 【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)

    摘要: 图像风格迁移(Image Style Transfer) 是一种将一张图像的风格应用到另一张图像上的技术。本文详细介绍了其实现的技术原理,同时给出完整的 Python 实现代码、训练好的Pt模型,并且通过 PyQT 实现了UI界面,更方便进行功能的展示。图片风格转换系统主要实现了3种风格

    2024年02月02日
    浏览(39)
  • 【pytorch】ResNet18、ResNet20、ResNet34、ResNet50网络结构与实现

    选取经典的早期Pytorch官方实现代码进行分析 https://github.com/pytorch/vision/blob/9a481d0bec2700763a799ff148fe2e083b575441/torchvision/models/resnet.py 各种ResNet网络是由BasicBlock或者bottleneck构成的,它们是构成深度残差网络的基本模块 ResNet的大部分各种结构是1层conv+4个block+1层fc 需要注意的是最后

    2024年02月02日
    浏览(31)
  • PyTorch深度学习实战 | 基于深度学习的电影票房预测研究

    基于深度学习的映前票房预测模型(CrossDense网络结构模型),该模型通过影片基本信息如:电影类型、影片制式、档期和电影的主创阵容和IP特征等信息对上映影片的票房进行预测。 本篇采用451部电影作为训练模型,最后再在194部影片上进行测试,模型的绝对精度为55%,相对精

    2023年04月24日
    浏览(29)
  • [深度学习实战]基于PyTorch的深度学习实战(下)[Mnist手写数字图像识别]

    PyTorch——开源的Python机器学习库   首先感谢所有点开本文的朋友们!基于PyTorch的深度学习实战可能要告一段落了。本想着再写几篇关于 PyTorch神经网络深度学习 的文章来着,可无奈项目时间紧任务重,要求 短时间内出图并做好参数拟合 。所以只得转战 Matlab 编程,框架旧

    2024年02月16日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包