模型
不需输入输出为随机过程,求最优权向量使得输出估计结果的样本均方误差最小
b
^
⃗
H
=
w
⃗
H
A
H
{
b
^
H
=
[
d
^
(
M
)
d
^
(
M
+
1
)
⋯
d
^
(
N
)
]
A
H
=
[
u
(
M
)
u
(
M
+
1
)
⋯
u
(
N
)
]
=
[
u
(
M
)
u
(
M
+
1
)
⋯
u
(
N
)
u
(
M
−
1
)
u
(
M
)
⋯
u
(
N
−
1
)
⋮
⋮
⋱
⋮
u
(
1
)
u
(
2
)
⋯
u
(
N
−
M
+
1
)
]
w
=
[
w
0
w
1
⋯
w
M
−
1
]
H
m
i
n
{
J
}
{
e
=
b
−
b
^
J
=
e
H
e
\begin {align} &\vec{\hat{b}}^H=\vec{w}^HA^H \\ &\left\{\begin{aligned} \hat{b}^H&=\begin{bmatrix} \hat{d}(M)&\hat{d}(M+1)&\cdots&\hat{d}(N) \end{bmatrix} \\ A^H&=\begin{bmatrix} u(M)&u(M+1)&\cdots&u(N)\end{bmatrix}\\ &=\begin{bmatrix} u(M)&u(M+1)&\cdots&u(N)\\ u(M-1)&u(M)&\cdots&u(N-1)\\ \vdots&\vdots&\ddots&\vdots\\ u(1)&u(2)&\cdots&u(N-M+1)\\ \end{bmatrix}\\ w&=\begin{bmatrix} w_0 & w_1 &\cdots &w_{M-1} \end{bmatrix} ^H\\ \end{aligned} \right.\\ &min\{J\}\\ &\left\{\begin{aligned} &e=b-\hat{b} \\ &J=e^He \end{aligned} \right. \end {align}
b^H=wHAH⎩
⎨
⎧b^HAHw=[d^(M)d^(M+1)⋯d^(N)]=[u(M)u(M+1)⋯u(N)]=
u(M)u(M−1)⋮u(1)u(M+1)u(M)⋮u(2)⋯⋯⋱⋯u(N)u(N−1)⋮u(N−M+1)
=[w0w1⋯wM−1]Hmin{J}{e=b−b^J=eHe
方法
最优权向量满足确定性正则方程:
A
H
A
w
^
=
A
H
b
A^HA\hat{w}=A^Hb
AHAw^=AHb文章来源:https://www.toymoban.com/news/detail-492451.html
算法
基于SVD的LS算法
LS最优权重仅与数据矩阵
A
A
A的奇异值和特征向量有关,故求得数据矩阵的奇异值和特征向量即可求得最有权重。
{
w
^
=
∑
i
=
1
K
(
x
i
⃗
H
θ
⃗
σ
i
2
)
x
i
⃗
θ
⃗
=
A
H
b
\begin{align} \left\{ \begin{aligned} &\hat{w}=\sum\limits_{i=1}^{K}(\frac{\vec{x_i}^H\vec{\theta}}{\sigma_i^2})\vec{x_i}\\ &\vec{\theta} = A^Hb \end{aligned} \right. \end{align}
⎩
⎨
⎧w^=i=1∑K(σi2xiHθ)xiθ=AHb
关于
A
H
A
A^HA
AHA是否奇异分类讨论:
{
非奇异
K
=
M
:
w
^
=
∑
i
=
1
M
(
x
i
⃗
H
θ
⃗
σ
i
2
)
x
i
⃗
奇异
K
<
M
:
w
^
=
∑
i
=
1
K
(
x
i
⃗
H
θ
⃗
σ
i
2
)
x
i
⃗
(
加入最小范数条件使得有唯一解
)
\begin{align} \left\{ \begin{aligned} 非奇异K=M:&\hat{w}=\sum\limits_{i=1}^{M}(\frac{\vec{x_i}^H\vec{\theta}}{\sigma_i^2})\vec{x_i}\\ 奇异K<M:&\hat{w}=\sum\limits_{i=1}^{K}(\frac{\vec{x_i}^H\vec{\theta}}{\sigma_i^2})\vec{x_i}(加入最小范数条件使得有唯一解)\\ \end{aligned} \right. \end{align}
⎩
⎨
⎧非奇异K=M:奇异K<M:w^=i=1∑M(σi2xiHθ)xiw^=i=1∑K(σi2xiHθ)xi(加入最小范数条件使得有唯一解)文章来源地址https://www.toymoban.com/news/detail-492451.html
到了这里,关于最小二乘估计理论的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!