GIS大数据处理框架sedona(塞多纳)编程入门指导

这篇具有很好参考价值的文章主要介绍了GIS大数据处理框架sedona(塞多纳)编程入门指导。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GIS大数据处理框架sedona(塞多纳)编程入门指导

简介

Apache Sedona™是一个用于处理大规模空间数据的集群计算系统。Sedona扩展了现有的集群计算系统,如Apache Spark和Apache Flink,使用一组开箱即用的分布式空间数据集和空间SQL,可以有效地加载、处理和分析跨机器的大规模空间数据。码云镜像 码云sedona文档持续更新中

代码结构

GIS大数据处理框架sedona(塞多纳)编程入门指导

  1. common java核心包,对底层JTS、geotools坐标系转换等操作方法的接口包装,并提供了circle(扩展JTS功能),距离计算方法:Haversine方式,Spheroid椭球;WKT,GeoJSON等格式转换;索引支持QUADTREE,RTREE;geohash计算;供spark、flink等上层应用调用使用
  2. core 与spark适配核心包,封装提供基础对象SpatialRDD,PointRDD,LineStingRDD,CircleRDD,PolygonRDD;几何链接操作joinJudgement(通过几何拓扑关系),knnJudgement(几何距离),rangeJudgement(treeIndex索引范围查询);数据读取转换formatMapper:cvs,wkt,geoJson,shapefile,netcdf;spatialPartitioning分区器:QuadtreePartitioning,KDBTreePartitioner等
  3. flink flink适配,调用common下的functions里面提供的函数方法
  4. python-adapter python适配,调用common下的functions里面提供的函数方法
  5. sql spark-sql适配,调用common下的functions里面提供的函数方法

使用说明

在spark下面的使用说明

1.安装

具体参看

<dependency>
  <groupId>org.apache.sedona</groupId>
  <artifactId>sedona-spark-shaded-3.0_2.12</artifactId>
  <version>1.4.0</version>
</dependency>
<dependency>
  <groupId>org.apache.sedona</groupId>
  <artifactId>sedona-viz-3.0_2.12</artifactId>
  <version>1.4.0</version>
</dependency>
<!-- Optional: https://mvnrepository.com/artifact/org.datasyslab/geotools-wrapper -->
<dependency>
    <groupId>org.datasyslab</groupId>
    <artifactId>geotools-wrapper</artifactId>
    <version>1.4.0-28.2</version>
</dependency>

2.初始化SparkSession

SparkSession sparkSession = SparkSession.builder()
.master("local[*]") // Delete this if run in cluster mode
.appName("readTestScala") // Change this to a proper name
// Enable Sedona custom Kryo serializer
.config("spark.serializer", KryoSerializer.class.getName) // org.apache.spark.serializer.KryoSerializer
.config("spark.kryo.registrator", SedonaKryoRegistrator.class.getName)
.getOrCreate() // org.apache.sedona.core.serde.SedonaKryoRegistrator

3.安装函数

SedonaSQLRegistrator.registerAll(sparkSession)

4.使用例子

4.1 dataFrame方式加载数据

4.1.1 从文件加载数据

假设有一个WKT数据格式的tsv文件,存储位置/Download/usa-county.tsv

POLYGON (..., ...)  Cuming County   
POLYGON (..., ...)  Wahkiakum County
POLYGON (..., ...)  De Baca County
POLYGON (..., ...)  Lancaster County

加载

Dataset<Row> rawDf = sparkSession.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()

结果展示

|                 _c0|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|_c8|  _c9|_c10| _c11|_c12|_c13|      _c14|    _c15|       _c16|        _c17|
+--------------------+---+---+--------+-----+-----------+--------------------+---+---+-----+----+-----+----+----+----------+--------+-----------+------------+
|POLYGON ((-97.019...| 31|039|00835841|31039|     Cuming|       Cuming County| 06| H1|G4020|null| null|null|   A|1477895811|10447360|+41.9158651|-096.7885168|
|POLYGON ((-123.43...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06| H1|G4020|null| null|null|   A| 682138871|61658258|+46.2946377|-123.4244583|
|POLYGON ((-104.56...| 35|011|00933054|35011|    De Baca|      De Baca County| 06| H1|G4020|null| null|null|   A|6015539696|29159492|+34.3592729|-104.3686961|
|POLYGON ((-96.910...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06| H1|G4020| 339|30700|null|   A|2169240202|22877180|+40.7835474|-096.6886584|
4.1.1 通过ST_函数
SELECT ST_GeomFromWKT(_c0) AS countyshape, _c1, _c2
4.1.3 从GeoJSON文件读取
String schema = "type string, crs string, totalFeatures long, features array<struct<type string, geometry string, properties map<string, string>>>";
sparkSession.read.schema(schema).json(geojson_path)
    .selectExpr("explode(features) as features") // Explode the envelope to get one feature per row.
    .select("features.*") // Unpack the features struct.
    .withColumn("geometry", expr("ST_GeomFromGeoJSON(geometry)")) // Convert the geometry string.
    .printSchema();
4.1.4 从数据库读取
// For any JDBC data source, inluding Postgis.
Dataset<Row> df = sparkSession.read().format("jdbc")
    // Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

// This is a simplified version that works for Postgis.
Dataset<Row> df = sparkSession.read().format("jdbc")
    // Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

4.2 CRS(坐标系)转换

SELECT ST_Transform(countyshape, "epsg:4326", "epsg:3857") AS newcountyshape, _c1, _c2, _c3, _c4, _c5, _c6, _c7
FROM spatialdf

4.3 地理空间查询

4.3.1 范围查询

ST_Contains, ST_Intersects, ST_Within

SELECT *
FROM spatialdf
WHERE ST_Contains (ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape)
4.3.2 距离查询

ST_Distance

SELECT countyname, ST_Distance(ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape) AS distance
FROM spatialdf
ORDER BY distance DESC
LIMIT 5
4.3.3 关联查询
SELECT *
FROM polygondf, pointdf
WHERE ST_Contains(polygondf.polygonshape,pointdf.pointshape)

SELECT *
FROM polygondf, pointdf
WHERE ST_Intersects(polygondf.polygonshape,pointdf.pointshape)

SELECT *
FROM pointdf, polygondf
WHERE ST_Within(pointdf.pointshape, polygondf.polygonshape)

SELECT *
FROM pointdf1, pointdf2
WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) < 2

5 存储

已入postgis为例文章来源地址https://www.toymoban.com/news/detail-492492.html

my_postgis_db# create table my_table (id int8, geom geometry);

df.withColumn("geom", expr("ST_AsEWKB(geom)")
    .write.format("jdbc")
    .option("truncate","true") // Don't let Spark recreate the table.
    // Other options.
    .save()

// If you didn't create the table before writing you can change the type afterward.
my_postgis_db# alter table my_table alter column geom type geometry;

6 SpatialRDD与DataFrame相好转换

6.1 SpatialRDD转DataFrame
Dataset<Row> spatialDf = Adapter.toDf(spatialRDD, sparkSession)
6.2 DataFrame转SpatialRDD
val schema = StructType(Array(
  StructField("county", GeometryUDT, nullable = true),
  StructField("name", StringType, nullable = true),
  StructField("price", DoubleType, nullable = true),
  StructField("age", IntegerType, nullable = true)
))
val spatialDf = Adapter.toDf(spatialRDD, schema, sparkSession)

到了这里,关于GIS大数据处理框架sedona(塞多纳)编程入门指导的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python编程:高效数据处理与自动化任务实践

    一、引言 Python,作为一种解释型、交互式、面向对象的编程语言,凭借其简洁易懂的语法和强大的功能库,已经成为数据科学、机器学习、Web开发等多个领域的首选工具。本文将探讨Python在数据处理和自动化任务方面的应用,通过具体的代码案例展示Python的强大功能。 二、

    2024年04月26日
    浏览(32)
  • Hadoop与Spark:大数据处理框架的比较与选择

    Hadoop与Spark:大数据处理框架的比较与选择 在大数据的时代背景下,数据处理和分析的需求日益增长。为了满足这些需求,开发者们创造了许多大数据处理框架,其中最为人们熟知的可能就是Hadoop和Spark了。这两者各有其优势,选择哪一个取决于你的具体需求。下面我们将对

    2024年01月25日
    浏览(41)
  • 大数据处理领域的经典框架:MapReduce详解与应用【上进小菜猪大数据】

    上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。 MapReduce是一个经典的大数据处理框架,可以帮助我们高效地处理庞大的数据集。本文将介绍MapReduce的基本原理和实现方法,并给出一个简单的示例。 MapReduce的基本原理包括两个阶段:Map和Reduce。 1、Map阶段 M

    2024年02月07日
    浏览(47)
  • Python 框架学习 Django篇 (八) 代码优化、数据库冗余处理

    我们开发软件系统的时候,需要不断的反思我们代码里面是否有可以优化的地方。而优化的重点之一,就是把冗余的代码优化为可以复用的库。我们在前面编写了一些功能,但是其中存在很多冗余的方法 打开这3个文件我们可以看到他们的入口函数dispatcher  实际的代码相似度

    2024年02月06日
    浏览(45)
  • 基于C#编程建立泛型Matrix数据类型及对应处理方法

            上一篇文档中描述了如何写一个VectorT类,本次在上一篇文档基础上,撰写本文,介绍如何书写一个泛型Matrix,可以应用于int、double、float等C#数值型的matrix。         本文所描述的MatrixT是一个泛型,具有不同数值类型Matrix矩阵构造、新增、删除、查询、更改、

    2024年02月02日
    浏览(40)
  • GPT-4科研实践:数据可视化、统计分析、编程、机器学习数据挖掘、数据预处理、代码优化、科研方法论

    查看原文GPT4科研实践技术与AI绘图 GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。 例如在科研编程、绘图领域 : 1、编程建议和示例代码:  无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。

    2024年02月07日
    浏览(59)
  • 使用Python编程语言处理数据 (Processing data using Python programm

    作者:禅与计算机程序设计艺术 Python作为一种高级、开源、跨平台的编程语言,已经成为当今最流行的数据分析和机器学习工具。本文介绍了使用Python编程语言处理数据的一些基础知识,如列表、字典、集合、迭代器等,并对pandas、numpy、matplotlib、seaborn等数据分析库进行了

    2024年02月07日
    浏览(47)
  • 【ARMv8 SIMD和浮点指令编程】NEON 通用数据处理指令——复制、反转、提取、转置...

    NEON 通用数据处理指令包括以下指令(不限于): • DUP 将标量复制到向量的所有向量线。 • EXT 提取。 • REV16、REV32、REV64 反转向量中的元素。 • TBL、TBX 向量表查找。 • TRN 向量转置。 • UZP、ZIP 向量交叉存取和反向交叉存取。 1 DUP (element) 将向量元素复制为向量或标量。

    2024年02月07日
    浏览(42)
  • Java 学习路线:基础知识、数据类型、条件语句、函数、循环、异常处理、数据结构、面向对象编程、包、文件和 API

    Java 是一种由 Sun Microsystems 于 1995 年首次发布的编程语言和计算平台。Java 是一种通用的、基于类的、面向对象的编程语言,旨在减少实现依赖性。它是一个应用程序开发的计算平台。Java 快速、安全、可靠,因此在笔记本电脑、数据中心、游戏机、科学超级计算机、手机等领

    2024年03月24日
    浏览(87)
  • BIC-2022-BDT:区块链和基于数字双胞胎的智能制造高效数据处理安全框架

    摘要 工业物联网具有智能连接、数据实时处理、协同监测、信息自动处理等特点,是物联网时代的重要组成部分之一。异构工业物联网设备对高数据速率、高可靠性、高覆盖、低延迟的要求,已成为信息安全领域的一大挑战。工业物联网中的智能制造产业需要多方协同的信息

    2024年02月06日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包