pytorch进阶学习(二):使用DataLoader读取自己的数据集

这篇具有很好参考价值的文章主要介绍了pytorch进阶学习(二):使用DataLoader读取自己的数据集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

上一节使用的是官方数据集fashionminist进行训练,这节课使用自己搜集的数据集来进行数据的获取和训练。

所需资源

教学视频:https://www.bilibili.com/video/BV1by4y1b7hX/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=e482aea0f5ebf492c0b0220fb64f98d3

pytorch进阶学习(一):https://blog.csdn.net/weixin_45662399/article/details/129737499?spm=1001.2014.3001.5501

课程准备:本节课需要用到3个Python文件和一个数据集文件,代码后面我都会给出,zip需要自己下载,,数据集zip文件和所需的三个代码文件可以在“leo在这”进行下载。

一、数据集文件准备

1.1 项目文件结构

下图为我的项目文件在远程服务器上的目录,需要新建一个dataset中为上传的自己的数据集。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

1.2 上传数据集到服务器

数据集文件解压后如下所示,有6个子文件夹,对应6个类别。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

我们先把dataset.zip上传到服务器中的代码项目文件夹中一定要找到服务器中项目的路径,不要传错位置!

pytorch进阶学习(二):使用DataLoader读取自己的数据集

我的项目目录在服务器中的路径为“tmp/pycharm_932”,数据集zip文件即下载到tmp/pycharm_932/dataset目录下。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

1.3 解压zip文件

回到服务器控制台在红,先使用cd命令定位到tmp/pycharm_932/dataset路径下,然后使用unzip 'dataset.zip'命令解压压缩文件。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

可以看到服务器完成了解压。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

最后把zip文件从dataset文件夹中删去即可,最终解压好的文件如下。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

1.4 代码框架解读

  1. 'CreateDataset.py' 用于把数据集文件夹中的所有图片文件生成一个TXT文件,其中存放着所有图片的路径和图片对应的标签。

  1. 'CreateDataLoader.py' 用于把上一步生成的TXT文件中的信息提取出来,进行图片信息的打包,生成一个dataloader

  1. 最后在'加载自己的数据.py' 文件中对dataloader进行使用,并且完成网络的训练和测试。

二、运行CreateDataset.py

作用:该代码可以生成训练集和测试集中每张图片的路径和标签,保存在TXT文件中。后续即可以从文件中调用每一张图片,进行读取。

2.1 代码实现

'''
生成训练集和测试集,保存在txt文件中
'''

import os
import random

#60%当训练集
train_ratio = 0.6
#剩下的当测试集
test_ratio = 1-train_ratio

rootdata = r"dataset"

train_list, test_list = [],[]
data_list = []

class_flag = -1
for a,b,c in os.walk(rootdata):
    print(a)
    for i in range(len(c)):
        data_list.append(os.path.join(a,c[i]))

    for i in range(0,int(len(c)*train_ratio)):
        train_data = os.path.join(a, c[i])+'\t'+str(class_flag)+'\n'
        train_list.append(train_data)

    for i in range(int(len(c) * train_ratio),len(c)):
        test_data = os.path.join(a, c[i]) + '\t' + str(class_flag)+'\n'
        test_list.append(test_data)

    class_flag += 1

print(train_list)
random.shuffle(train_list)
random.shuffle(test_list)

with open('train.txt','w',encoding='UTF-8') as f:
    for train_img in train_list:
        f.write(str(train_img))

with open('test.txt','w',encoding='UTF-8') as f:
    for test_img in test_list:
        f.write(test_img)

2.2 运行结果

可以看到此时服务器中文件管理器中已经有了test.txt和train.txt两个文件。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

生成了train.txt和test.txt两个文件,里面保存了每张图片的对应相对路径和类别标签,标签是以int型进行存储。打开test.txt文件可以发现里面的内容为测试集所有图片路径以及其标签。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

2.3 代码要点解析

  1. 对训练集和测试集的划分比例为6:4

rootdata为数据集文件保存的根目录,为dataset文件夹。

#60%当训练集
train_ratio = 0.6
#剩下的当测试集
test_ratio = 1-train_ratio
rootdata = r"dataset"

2. 读取文件夹

  • a读取文件夹根目录,再使用c[i]读取每个图片的名称,使用os.path.join进行拼接,实现每张图片的相对路径的path存取。可以看到a为dataset加上下面类别子文件夹。

dataset/擦花
dataset/桔皮
dataset/碰伤
dataset/横条压凹
dataset/不导电
dataset/漏底

和c[i]进行拼接后即可完成每一张图片的定位。

dataset/碰伤/碰伤20180906142721对照样本.jpg
  • 然后使用class_flag进行图片类别标签的存储,从0开始依次增加,一共6个类别,故取值为【0,5】。

  • path和label之间使用\t进行分割,即一个tab的距离。

for a,b,c in os.walk(rootdata):
    print(a)
    for i in range(len(c)):
        data_list.append(os.path.join(a,c[i]))

    for i in range(0,int(len(c)*train_ratio)):
        train_data = os.path.join(a, c[i])+'\t'+str(class_flag)+'\n'
        train_list.append(train_data)

    for i in range(int(len(c) * train_ratio),len(c)):
        test_data = os.path.join(a, c[i]) + '\t' + str(class_flag)+'\n'
        test_list.append(test_data)

    class_flag += 1

3. 写入文件

  • 使用shuffle打乱数据集的顺序,把上面生成的每一张图片的“路径+标签”转为字符串形式,然后存入txt文件中。

  • 因为文件名有中文,所以使用utf-8编码形式。

random.shuffle(train_list)
random.shuffle(test_list)

with open('train.txt','w',encoding='UTF-8') as f:
    for train_img in train_list:
        f.write(str(train_img))

with open('test.txt','w',encoding='UTF-8') as f:
    for test_img in test_list:
        f.write(test_img)

三、CreateDataLoader.py

作用:完成对上一步dataset中生成的txt文件中对图片和标签信息的读取,将图片进行打包放入图片加载器DataLoader中。

使用系统带的数据集如下代码所示,将带的数据集存在training_data中,将training_data作为参数传入DataLoader中。

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# 下面是测试集,同样需要下载
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

可以看到我们代码是使用LoadData类自己新建了一个数据集train_dataset,然后把train_dataset传入DataLoader中。

train_dataset = LoadData("train.txt", True)
 # 传入dataloader中
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=10,shuffle=True)

3.1 代码实现

import torch
from PIL import Image

import torchvision.transforms as transforms
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

from torch.utils.data import Dataset

# 数据归一化与标准化

# 图像标准化
transform_BZ= transforms.Normalize(
    mean=[0.5, 0.5, 0.5],# 取决于数据集
    std=[0.5, 0.5, 0.5]
)

#读取TXT文件
class LoadData(Dataset):
    def __init__(self, txt_path, train_flag=True):
        self.imgs_info = self.get_images(txt_path)
        self.train_flag = train_flag

        self.train_tf = transforms.Compose([
                transforms.Resize(224),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
                transforms.ToTensor(),
                transform_BZ
            ])
        self.val_tf = transforms.Compose([
                transforms.Resize(224),
                transforms.ToTensor(),
                transform_BZ
            ])

    def get_images(self, txt_path):
        with open(txt_path, 'r', encoding='utf-8') as f:
            imgs_info = f.readlines()
            imgs_info = list(map(lambda x:x.strip().split('\t'), imgs_info))
        return imgs_info

    def padding_black(self, img):
        w, h  = img.size
        scale = 224. / max(w, h)
        img_fg = img.resize([int(x) for x in [w * scale, h * scale]])
        size_fg = img_fg.size
        size_bg = 224
        img_bg = Image.new("RGB", (size_bg, size_bg))
        img_bg.paste(img_fg, ((size_bg - size_fg[0]) // 2,
                              (size_bg - size_fg[1]) // 2))
        img = img_bg
        return img

    def __getitem__(self, index):
        img_path, label = self.imgs_info[index]
        img = Image.open(img_path)
        img = img.convert('RGB')
        img = self.padding_black(img)
        if self.train_flag:
            img = self.train_tf(img)
        else:
            img = self.val_tf(img)
        label = int(label)

        return img, label

    def __len__(self):
        return len(self.imgs_info)


if __name__ == "__main__":
    train_dataset = LoadData("train.txt", True)
    print("数据个数:", len(train_dataset))
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=10,
                                               shuffle=True)
    for image, label in train_loader:
        print(image.shape)
        print(image)
        # img = transform_BZ(image)
        # print(img)
        print(label)

    # test_dataset = Data_Loader("test.txt", False)
    # print("数据个数:", len(test_dataset))
    # test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
    #                                            batch_size=10,
    #                                            shuffle=True)
    # for image, label in test_loader:
    #     print(image.shape)
    #     print(label)

3.2 运行结果

我学校服务器跑大约等了两分钟,然后跑完后出现如下结果。

pytorch进阶学习(二):使用DataLoader读取自己的数据集
pytorch进阶学习(二):使用DataLoader读取自己的数据集

可以看到数据集中有380张图片,图片大小为224*224,dataloader中图片每10个为一组,tensor中为10个图片的标签。

3.3 代码要点解析

3.3.1 class LoadData init方法

  1. 该类的初始化方法,定义了两个变量,img_info为get_images方法获取的信息,是一个list,保存着图片的路径和标签;train_flag为标志点,标志是否为训练集,TRUE为时=是,否则为测试集。

  1. train_tf和val_tf使用compose完成对图片样式的变换,如定义大小为224*224,随机水平展平,正则化等。

3.3.2 get_images方法

通过txt文件的路径读取到txt中信息,使用‘\t’分割图片路径和图片标签,并且保存在imgs)info的列表中。

3.3.3 padding_black方法

如果图片过小,使用padding填充该图片,使其能够成为224*224大小。

3.3.4 getitem方法

  1. 该方法为class loaddata的主方法,使用index下标获取到每一张图片的path和label后,用flag判断为训练集还是验证集,并且采用对应的图片处理措施(train_tf/val_tf)。

  1. 返回的是图片和对应标签。

3.3.5 main方法

  1. 把LoadData生成的数据存入train_dataset中,作为数据集传入torch的data.DataLoader类中,设置batchsize=10.

  1. 10张图片为一组,输出每张图片和标签。

四、加载自己的数据.py

4.1 代码实现

大部分和第一节中的模型一样。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
from CreateDataloader import LoadData

# 定义网络模型
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        # 碾平,将数据碾平为一维
        self.flatten = nn.Flatten()
        # 定义linear_relu_stack,由以下众多层构成
        self.linear_relu_stack = nn.Sequential(
            # 全连接层
            nn.Linear(3*224*224, 512),
            # ReLU激活函数
            nn.ReLU(),
            # 全连接层
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 6),
            nn.ReLU()
        )
    # x为传入数据
    def forward(self, x):
        # x先经过碾平变为1维
        x = self.flatten(x)
        # 随后x经过linear_relu_stack
        logits = self.linear_relu_stack(x)
        # 输出logits
        return logits



# 定义训练函数,需要
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。
    for batch, (X, y) in enumerate(dataloader):
        # 将数据存到显卡
        X, y = X.cuda(), y.cuda()

        # 得到预测的结果pred
        pred = model(X)

        # 计算预测的误差
        # print(pred,y)
        loss = loss_fn(pred, y)

        # 反向传播,更新模型参数
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 每训练100次,输出一次当前信息
        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test(dataloader, model):
    size = len(dataloader.dataset)
    print("size = ",size)
    # 将模型转为验证模式
    model.eval()
    # 初始化test_loss 和 correct, 用来统计每次的误差
    test_loss, correct = 0, 0
    # 测试时模型参数不用更新,所以no_gard()
    # 非训练, 推理期用到
    with torch.no_grad():
        # 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
        for X, y in dataloader:
            # 将数据转到GPU
            X, y = X.cuda(), y.cuda()
            # 将图片传入到模型当中就,得到预测的值pred
            pred = model(X)
            # 计算预测值pred和真实值y的差距
            test_loss += loss_fn(pred, y).item()
            # 统计预测正确的个数
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= size
    correct /= size
    print("correct = ",correct)
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")



if __name__=='__main__':
    batch_size = 16

    # # 给训练集和测试集分别创建一个数据集加载器
    train_data = LoadData("train.txt", True)
    valid_data = LoadData("test.txt", False)


    train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True)
    test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)

    for X, y in test_dataloader:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break


    # 如果显卡可用,则用显卡进行训练
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))

    # 调用刚定义的模型,将模型转到GPU(如果可用)
    model = NeuralNetwork().to(device)

    print(model)

    # 定义损失函数,计算相差多少,交叉熵,
    loss_fn = nn.CrossEntropyLoss()

    # 定义优化器,用来训练时候优化模型参数,随机梯度下降法
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)  # 初始学习率


    # 一共训练5次
    epochs = 5
    for t in range(epochs):
        print(f"Epoch {t+1}\n-------------------------------")
        train(train_dataloader, model, loss_fn, optimizer)
        test(test_dataloader, model)
    print("Done!")

    # 读取训练好的模型,加载训练好的参数
    model = NeuralNetwork()
    model.load_state_dict(torch.load("model.pth"))

4.2 运行结果

首先打印出来了网络的结构。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

之后是训练模型的结果,一共有5个epoch,可以看到准确率不是很高。

pytorch进阶学习(二):使用DataLoader读取自己的数据集

4.3 代码解析

pytorch进阶学习(二):使用DataLoader读取自己的数据集

num_workers为cpu使用多线程读取数据,pin_memory为不写入虚拟内存文章来源地址https://www.toymoban.com/news/detail-492938.html

到了这里,关于pytorch进阶学习(二):使用DataLoader读取自己的数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【代码笔记】Pytorch学习 DataLoader模块详解

    dataloader主要有6个class构成(可见下图) _DatasetKind: _InfiniteConstantSampler: DataLoader: _BaseDataLoaderIter: _SingleProcessDataLoaderIter: _MultiProcessingDataLoaderIter: 我们首先看一下DataLoader的整体结构: init : _get_iterator: multiprocessing_context: multiprocessing_context: setattr : iter : _auto_collation: _ind

    2023年04月11日
    浏览(38)
  • 深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

    简单来说, TensorDataset 与 DataLoader 这两个类的作用, 就是将数据读入并做整合,以便交给模型处理。就像石油加工厂一样,你不关心石油是如何采集与加工的,你关心的是自己去哪加油,油价是多少,对于一个模型而言,DataLoader就是这样的一个予取予求的数据服务商。 参考

    2024年01月24日
    浏览(44)
  • pytorch实战5——DataLoader数据集制作

    目录 1.如何自定义数据集: 咱们以花朵数据集为例: 任务1:读取txt文件中的路径和标签 任务2:通过上面字典返回数据,分别把数据和标签都存在list里 任务3:图像数据路径得完整 任务4:把上面那几个事得写在一起,整合到一个类。 任务5:数据预处理(transform)¶ 任务6:根据

    2024年02月04日
    浏览(41)
  • PyTorch 深度学习之加载数据集Dataset and DataLoader(七)

    全部Batch:计算速度,性能有问题 1 个 :跨越鞍点 mini-Batch:均衡速度与性能 两种处理数据的方式 linux 与 windows 多线程不一样 torchvision 内置数据集 MINIST Dataset

    2024年02月07日
    浏览(44)
  • 使用pytorch处理自己的数据集

    目录 1 返回本地文件中的数据集 2 根据当前已有的数据集创建每一个样本数据对应的标签 3 tensorboard的使用 4 transforms处理数据 tranfroms.Totensor的使用 transforms.Normalize的使用 transforms.Resize的使用 transforms.Compose使用 5 dataset_transforms使用 1 返回本地文件中的数据集 在这个操作中,当

    2024年02月06日
    浏览(34)
  • D2L,Pytorch win10下使用dataloader时出现runtimeerror: dataloader worker (pid(s) ) exited unexpectedly的解决方案

            我是用python3.8+pytorch1.11,在李沐老师的课程展示中使用的环境是linux没有报错,但win10下在dataloader使用前需要加上 例如: 即可成功运行         网上还有其他方法将num_worker设为0也可以单线程成功运行,不过直接导入d2l的dataloader没有对应的参数 可能原因:   

    2024年02月13日
    浏览(41)
  • pytorch进阶学习(三):在数据集数量不够时如何进行数据增强

    对图片数据增强,可以对图片实现: 1. 尺寸放大缩小 2. 旋转(任意角度,如45°,90°,180°,270°) 3. 翻转(水平翻转,垂直翻转) 4. 明亮度改变(变亮,变暗) 5. 像素平移(往一个方向平移像素,空出部分自动填补黑色) 6. 添加噪声(椒盐噪声,高斯噪声) 目录 一、放

    2024年02月13日
    浏览(41)
  • 深度学习Docker使用, (Pytorch/TensorRT/DeepStream),标记上传制作自己的DockerHub

    https://docs.docker.com/engine/install/ubuntu/ Set Up Install Docker Engine 安装nvidia cuda tookit 加入了之后重启了才能使用 Docker Root Dir: /data/docker 我的docker数据的挂载就是在/data/docker下面的 https://catalog.ngc.nvidia.com/containers 全部镜像都是在NVIDIA官方找的 登陆自己的账号 标记自己的镜像 在这里面

    2024年02月13日
    浏览(43)
  • 人工智能学习07--pytorch23--目标检测:Deformable-DETR训练自己的数据集

    1、pytorch conda create -n deformable_detr python=3.9 pip 2、激活环境 conda activate deformable_detr 3、torch 4、其他的库 pip install -r requirements.txt 5、编译CUDA cd ./models/ops sh ./make.sh #unit test (should see all checking is True) python test.py (我没运行这一步) 主要是MultiScaleDeformableAttention包,如果中途换了

    2024年02月14日
    浏览(158)
  • 使用自己的数据利用pytorch搭建全连接神经网络进行回归预测

    引入必要的库,包括PyTorch、Pandas等。 这里使用sklearn自带的加利福尼亚房价数据,首次运行会下载数据集,建议下载之后,处理成csv格式单独保存,再重新读取。 后续完整代码中,数据也是采用先下载,单独保存之后,再重新读取的方式。

    2024年02月13日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包