1. 粒子群算法简介
粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。文章来源:https://www.toymoban.com/news/detail-492992.html
2. 算法流程
上面介绍了粒子群算法来历,过程。没有了解过的小伙伴肯定是一脸萌容。不过这已经是优化算法中最简单、最没有心机的算法了,也是入门优化算法的不二选择。文章来源地址https://www.toymoban.com/news/detail-492992.html
到了这里,关于「深度学习之优化算法」笔记(三)之粒子群算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!