计算机视觉与图形学-神经渲染专题-NeRF汇总大礼包-I

这篇具有很好参考价值的文章主要介绍了计算机视觉与图形学-神经渲染专题-NeRF汇总大礼包-I。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

(说明:如果您认为下面的文章对您有帮助,请您花费一秒时间点击一下最底部的广告以此来激励本人创作,谢谢!!!)

计算机视觉与图形学-神经渲染专题-NeRF汇总大礼包-I

原始NeRF论文

001 NeRF Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF综述类

002 NEURAL VOLUME RENDERING NERF AND BEYOND

025 Multimodal Image Synthesis and Editing: A Survey

数据集

003 Kubric A scalable dataset generator

144 RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis

快速推理

000 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

012 Neural Sparse Voxel Fields

028 KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

035 PlenOctrees for Real-time Rendering of Neural Radiance Fields

036 MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures

039 DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks

044 HeadNeRF: A Real-time NeRF-based Parametric Head Model

053 AutoInt: Automatic Integration for Fast Neural Volume Rendering

057 VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field

062 153 EfficientNeRF: Efficient Neural Radiance Fields

069 R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis

075 DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering

076 View Synthesis with Sculpted Neural Points

171 360Roam: Real-Time Indoor Roaming Using Geometry-Aware 360 Radiance Fields

160 UNeRF: Time and Memory Conscious U-Shaped Network for Training Neural Radiance Fields

142 SqueezeNeRF: Further factorized FastNeRF for memory-efficient inference

125 NeuSample: Neural Sample Field for Efficient View Synthesis

098 Baking Neural Radiance Fields for Real-Time View Synthesis

097 FastNeRF: High-Fidelity Neural Rendering at 200FPS

093 DeRF: Decomposed Radiance Fields

更多内容请关注公众号:元宇宙MetaAI

欢迎朋友们投稿,投稿可添加微信:NewYear-2016文章来源地址https://www.toymoban.com/news/detail-492994.html

到了这里,关于计算机视觉与图形学-神经渲染专题-NeRF汇总大礼包-I的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Part1:使用 TensorFlow 和 Keras 的 NeRF计算机图形学和深度学习——计算机图形学世界中相机的工作原理

    是否有一种方法可以仅从一个场景多张不同视角的照片中捕获整个3D场景? 有。 NeRF:将场景表示为用于视图合成的神经辐射场中(NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis),Mildenhall等人(2020)的论文解答了这个问题。NeRF的更简单实现赢得了 TensorFlow社区聚光

    2024年02月07日
    浏览(51)
  • 计算机视觉: 神经网络的视觉世界

    计算机视觉是人工智能领域的一个重要分支,它涉及到计算机如何理解和处理图像和视频。随着深度学习技术的发展,神经网络已经成为计算机视觉的主要工具。在这篇文章中,我们将讨论计算机视觉的基本概念、核心算法和应用。 计算机视觉的主要任务包括图像分类、目标

    2024年02月21日
    浏览(47)
  • 计算机视觉-卷积神经网络

    目录 计算机视觉的发展历程 卷积神经网络 卷积(Convolution) 卷积计算 感受野(Receptive Field) 步幅(stride) 感受野(Receptive Field) 多输入通道、多输出通道和批量操作 卷积算子应用举例 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄

    2024年02月10日
    浏览(46)
  • 7.卷积神经网络与计算机视觉

    计算机视觉是一门研究如何使计算机识别图片的学科,也是深度学习的主要应用领域之一。 在众多深度模型中,卷积神经网络“独领风骚”,已经被称为计算机视觉的主要研究根据之一。 卷积神经网络最初由 Yann LeCun(杨立昆)等人在1989年提出,是最初取得成功的深度神经

    2024年04月10日
    浏览(78)
  • 计算机视觉 图像形成 几何图形和变换 3D到2D投影

            现在我们知道如何表示2D和3D几何图元以及如何在空间上转换它们,我们需要指定如何将 3D图元投影到图像平面上。 我们可以使用线性3D到2D投影矩阵来做到这一点。最简单的模型是正交法,它不需要除法就可以得到最终的(不均匀的)结果。更常用的模型是透视,

    2023年04月08日
    浏览(64)
  • 计算机视觉:深层卷积神经网络的构建

    上一节课程中我们学习了单卷积层的前向传播,本次课程我们构建一个具有三个卷积层的卷积神经网络,然后从输入(39*39*3)开始进行三次卷积操作,我们来看一下每次卷积的输入和输出维度的变化。 第一层使用3*3*3的过滤器来提取特征,那么f[1]=3,然后步长s[1]=1,填充p[1]

    2024年02月10日
    浏览(52)
  • 【计算机视觉】万字长文详解:卷积神经网络

    以下部分文字资料整合于网络,本文仅供自己学习用! 如果输入层和隐藏层和之前一样都是采用全连接网络,参数过多会导致 过拟合 问题,其次这么多的参数存储下来对计算机的内存要求也是很高的 解决这一问题,就需要用到——卷积神经网络 这是一种理解卷积的角度(

    2024年02月19日
    浏览(58)
  • 【深度学习】计算机视觉(五)——卷积神经网络详解

    卷积神经网络(CNN) 卷积神经网络基本上应用于图像数据。假设我们有一个输入的大小(28 * 28 * 3),如果我们使用正常的神经网络,将有2352(28 * 28 * 3)参数。并且随着图像的大小增加参数的数量变得非常大。我们“卷积”图像以减少参数数量。 CNN的输入和输出没什么特别

    2024年02月06日
    浏览(58)
  • 神经网络在计算机视觉中的主要技术

    计算机视觉是一种通过计算机程序对图像进行处理和分析的技术。在过去几十年中,计算机视觉技术发展迅速,成为了一种重要的技术手段,应用于各个领域。随着深度学习技术的发展,神经网络在计算机视觉领域的应用也越来越广泛。本文将从以下几个方面进行阐述: 背景

    2024年02月21日
    浏览(48)
  • 计算机视觉(四)神经网络与典型的机器学习步骤

    神经网络:大量神经元节点按一定体系架构连接成的网状结构——大脑结构 神经网络的作用 - 分类 - 模式识别 - 连续值预测 建立输入与输出的映射关系 每个神经元都是一个结构相似的独立单位,接受前一层传来的数据,并将这些数据的加权和输入非线性作用函数中,最后将

    2024年02月15日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包