支持向量机(Support Vector Machine, SVM)从线性分类到核函数扩展

这篇具有很好参考价值的文章主要介绍了支持向量机(Support Vector Machine, SVM)从线性分类到核函数扩展。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


支持向量机(Support Vector Machine,简称SVM)是一种强大而广泛应用的监督学习算法,用于分类和回归任务。本文将深入解析SVM的原理,从线性分类到核函数扩展

1. 线性分类与最大间隔

SVM的核心思想是在特征空间中找到一个最优的超平面,将不同类别的样本分开。对于线性可分的情况,SVM通过最大化分类边界(超平面)与两类样本之间的间隔来实现分类。这个间隔被称为最大间隔,使得SVM具有较好的鲁棒性和泛化能力

2. 支持向量

支持向量是指离最大间隔超平面最近的那些样本点。这些样本点对于定义超平面和决策边界起到重要作用。支持向量决定了SVM模型的结构和性能

3. 软间隔与惩罚因子

在实际应用中,很少有线性可分的数据集。为了处理线性不可分的情况,引入了软间隔(soft margin)概念。软间隔允许一些样本点位于超平面错误的一侧。为了平衡分类边界的鲁棒性和泛化能力,引入了惩罚因子C。C的取值决定了对误分类样本的容忍程度,较小的C会产生较宽松的决策边界,而较大的C会产生较严格的决策边界

4. 核函数扩展

当数据集不是线性可分的时候,线性SVM无法有效分类。为了解决这个问题,SVM引入了核函数的概念。核函数能够将低维特征空间中的样本映射到高维特征空间,从而使得原本线性不可分的问题变得线性可分。常用的核函数有线性核、多项式核、高斯核等

5. SVM的优缺点

SVM的优点:

  • 可处理高维特征空间和样本数量较大的数据集
  • 在处理线性可分问题时,具有较好的鲁棒性和泛化能力
  • 支持不同核函数的扩展,能够处理非线性问题

SVM的缺点:

  • 对于大规模数据集和高维数据集,训练时间较长
  • 对于选择合适的核函数和参数调优较为敏感
  • 在处理噪声较多的数据集时,容易产生过拟合

6. SVM代码示例

from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建SVM模型
model = SVC()

# 训练模型
model.fit(X_train, y_train)

# 预测结果
y_pred = model.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

代码中,首先加载了一个经典的鸢尾花数据集(Iris),将数据集划分为训练集和测试集。然后们创建一个SVM分类模型,并使用训练集进行训练。使用测试集进行预测,并计算准确率来评估模型的性能文章来源地址https://www.toymoban.com/news/detail-493049.html

到了这里,关于支持向量机(Support Vector Machine, SVM)从线性分类到核函数扩展的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习与深度学习——通过SVM线性支持向量机分类鸢尾花数据集iris求出错误率并可视化

    先来看一下什么叫数据近似线性可分,如下图所示,蓝色圆点和红色圆点分别代表正类和负类,显然我们不能找到一个线性的分离超平面将这两类完全正确的分开;但是如果将数据中的某些特异点(黑色箭头指向的点)去除之后,剩下的大部分样本点组成的集合是线性可分的,

    2023年04月18日
    浏览(63)
  • 支持向量机 SVM | 线性可分:软间隔模型

    线性可分SVM中,若想找到分类的超平面,数据必须是线性可分的;但在实际情况中,线性数据集存在少量的异常点,导致SVM无法对数据集线性划分 也就是说:正常数据本身是线性可分的,但是由于存在异常点数据,导致数据集不能够线性可分 为了解决上述问题,我们引入软

    2024年03月09日
    浏览(70)
  • 基于支持向量机SVM的港口分类,SVM原理,SVM工具箱详解

    目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 完整代码和数据下载链接: 基于支持向量机SVM的港口分类(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88636296 SVM应用实例, 基于支持向量机SVM的港口

    2024年02月03日
    浏览(50)
  • 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要 估计数据的概率分布作为中间步骤 。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁

    2024年02月03日
    浏览(63)
  • 第29步 机器学习分类实战:支持向量机(SVM)建模

    支持向量机(SVM)建模。 先复习一下参数(传送门),需要调整的参数有: ① kernel:{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’},默认为’rbf’。使用的核函数,必须是“linear”,“poly”,“rbf”,“sigmoid”,“precomputed”或者“callable”中的一个。 ② c:浮点

    2024年02月02日
    浏览(66)
  • 一文详解人工智能:线性回归、逻辑回归和支持向量机(SVM)

    在人工智能领域,线性回归、逻辑回归和支持向量机是常见的机器学习算法。本文将详细介绍这三种算法的原理和应用,并提供相应的代码示例。 线性回归是一种用于建立变量之间线性关系的回归分析方法。它通过拟合一个线性模型来预测连续变量的值。线性回归的目标是找

    2024年02月03日
    浏览(49)
  • 支持向量机(SVM)进行文本分类的Python简单示例实现

    支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类和回归问题。它的基本思想是将数据映射到高维空间中,使得数据在该空间中线性可分,然后在该空间中寻找最优的超平面,将不同类别的数据分开。 SVM的优点在于可以处理高维数据,具有较好

    2024年01月25日
    浏览(59)
  • SVM(支持向量机)进行分类的原理和python代码----通俗易懂

    SVM(支持向量机,Support Vector Machine)是一种非常流行的机器学习算法,可用于二分类和多分类问题。其基本思想是通过在不同类别的样本之间构建最大化分类间隔的线性或非线性超平面来实现分类。 SVM分类的基本步骤如下: 根据训练集数据,选取最优的超平面(通常为线性

    2024年02月11日
    浏览(56)
  • 支持向量机svm分类、回归、网格搜索 基于sklearn(python)实现

    由于水平有限 支持向量机(support vector machine)的数学原理和证明就不讲了 想知道可以去看李航的机器学习或者西瓜书 1、读入数据,将数据调成该库能够识别的格式 2、 将数据标准化 ,防止样本中不同特征的数值差别较大,对分类结果产生较大影响 3、利用网格搜索和k折交

    2023年04月11日
    浏览(46)
  • 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测

    分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测(完整源码和数据) 2.优化参数为:学习率,批量处理大小,正则化参数。 3.图很多,包括分类效果图,混淆矩阵图。 4.附赠案例数据可直接运行main一键出图~ 注意程序和数据放在一个文件夹,运

    2024年02月07日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包