【numpy基础】--通用计算

这篇具有很好参考价值的文章主要介绍了【numpy基础】--通用计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

numpy提供了简单灵活的接口,用于优化数据数组的计算。
通用计算最大的优势在于通过向量化操作,将循环推送至numpy之下的编译层,从而取得更快的执行效率。

numpy的通用计算让我们计算数组时就像计算单独一个变量一样,
不用写循环去遍历数组中的各个元素。
比如,对于一般的python二维数组,我们要给数组中每个值加1:

l = [[1, 2], [3, 4]]
print(l)
#运行结果
[[1, 2], [3, 4]]

for i in range(len(l)):
    for j in range(len(l[i])):
        l[i][j] += 1

print(l)
#运行结果
[[2, 3], [4, 5]]

如果用numpy的通用计算的话:

import numpy as np

l = np.array([[1,2], [3,4]])
print(l)
#运行结果
[[1, 2], [3, 4]]

l = l + 1
print(l)
#运行结果
[[2, 3], [4, 5]]

1. 算术计算

算术计算是最基本的,numpy数组支持直接用运算符或者通用函数来进行运算。

运算符 通用函数 说明
+ np.add 加法运算
- np.subtract 减法运算
* np.multiply 乘法运算
/ np.divide 除法运算
// np.floor_divide 向下整除运算
** np.power 指数运算
% np.mod 模运算

算术运算比较简单,就不一一演示各个运算符了。

需要注意的一点是,当numpy数组和单一数字运算时,数组中每个元素都单独和此数字运算。

arr = np.array([[1,2], [3, 4]])
print(arr)
#运行结果
[[1 2]
 [3 4]]

print(arr * 2)
#运行结果
[[2 4]
 [6 8]]

arr * 2 相当于arr中每个元素都 * 2

numpy数组和另一个numpy数组运算时,是两个数组对应位置的元素进行运算。
这就要求两个数组的 shape 要一样,否则会出错。

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[1, 0], [0, 1]])
print(arr1, arr2)
#运行结果
[[1 2]
 [3 4]]

[[1 0]
 [0 1]]

print(arr1 * arr2)
#运行结果
[[1 0]
 [0 4]]

对应元素相乘,所以只保留了对角线上的元素。

2. 三角函数

除了常用的算术运算,numpy的数组支持各类三角函数运算。
下面演示几个常用的三角函数:

arr = np.array([0, np.pi/6, np.pi/4, np.pi/2])

print("sin(arr)     = ", np.sin(arr))
print("cos(arr)     = ", np.cos(arr))
print("tan(arr)     = ", np.tan(arr))
#运行结果
sin(arr)     =  [0.         0.5        0.70710678 1.        ]
cos(arr)     =  [1.00000000e+00 8.66025404e-01 7.07106781e-01 6.12323400e-17]
tan(arr)     =  [0.00000000e+00 5.77350269e-01 1.00000000e+00 1.63312394e+16]

arr = np.array([-1, 0, 1])
print("arcsin(arr)  = ", np.arcsin(arr))
print("arccos(arr)  = ", np.arccos(arr))
print("arctan(arr)  = ", np.arctan(arr))
#运行结果
arcsin(arr)  =  [-1.57079633  0.          1.57079633]
arccos(arr)  =  [3.14159265 1.57079633 0.        ]
arctan(arr)  =  [-0.78539816  0.          0.78539816]

3. 指数和对数

常用的指数和对数如下:

x = np.array([1, 2, 4, 10])

print("e^x = ", np.exp(x))
print("2^x = ", np.exp2(x))
print("3^x = ", np.power(3, x))
#运行结果
e^x =  [2.71828183e+00 7.38905610e+00 5.45981500e+01 2.20264658e+04]
2^x =  [   2.    4.   16. 1024.]
3^x =  [    3     9    81 59049]

print("ln(x)    = ", np.log(x))
print("log2(x)  = ", np.log2(x))
print("log10(x) = ", np.log10(x))
#运行结果
ln(x)    =  [0.         0.69314718 1.38629436 2.30258509]
log2(x)  =  [0.         1.         2.         3.32192809]
log10(x) =  [0.         0.30103    0.60205999 1.        ]

4. 通用特性

除了通用的计算方法,还有一些特性也很有用。
下面介绍两个常用的特性,一个可以节约内存,提高程序的运行效率;另一个可以简化编码,提高程序的编写效率。

4.1. 指定输出位置

进行两个数组的计算时,比如x数组和y数组,计算的结果常常要用新的数组(比如z数组)来保存。

如果计算之后x数组或y数组不再需要的话,我们可以把运算结果保存在x数组或y数组中,这样就不用申请信的内存。

x = np.random.randint(1, 10, (3,3))
y = np.random.randint(1, 10, (3,3))

print(x)
print(y)
#运行结果
[[3 9 3]
 [8 6 9]
 [9 7 4]]
[[4 4 5]
 [1 6 6]
 [2 5 6]]

np.multiply(x, y, out=y)
print(x)
print(y)
#运行结果
[[3 9 3]
 [8 6 9]
 [9 7 4]]
[[12 36 15]
 [ 8 36 54]
 [18 35 24]]

设置参数 out=y,可以看到计算结果保存在了y数组中。

4.2. 简单的聚合

对于任意一个数组,按行或者列聚合合计值时:

x = np.random.randint(1, 10, (3,3))
print(x)
#运行结果
[[8 6 5]
 [4 8 4]
 [9 2 3]]

#每列的合计值
print(np.add.reduce(x))
#运行结果
[21 16 12]

#每行的合计值
print(np.add.reduce(x, axis=1))
#运行结果
[19 16 14]

上面是用np.add来聚合的,也可以使用 np.multiplynp.divide等等前面介绍的各种算术计算。

除了聚合合计值,numpy还提供了一个可以计算合计过程中每步计算结果的方法accumulate

x = np.random.randint(1, 10, 5)
print(x)
#运算结果
[6 1 6 9 7]

print(np.add.accumulate(x))
#运算结果:[x[0], x[0]+x[1], x[0]+x[1]+x[2]...]
[ 6  7 13 22 29]

print(np.multiply.accumulate(x))
#运算结果:[x[0], x[0]*x[1], x[0]*x[1]*x[2]...]
[6    6   36  324 2268]

5. 总结回顾

本篇主要介绍了 numpy数组的通用计算方法,通用计算把数组元素循环的复杂度封装起来,让我们用直观的方式计算数组,更容易实现各种数学公式和定理。

本篇介绍的算术计算三角函数,以及指数和对数等常用的方法,但不是全部的通用计算方法,更加复杂的微分和积分计算请参考官方的文档。文章来源地址https://www.toymoban.com/news/detail-493503.html

到了这里,关于【numpy基础】--通用计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python库,科学计算与数据可视化基础,知识笔记(numpy+matplotlib)

    这篇主要讲一下数据处理中科学计算部分的知识。 之前有一篇pandas处理数据的。 讲一下这几个库的区别。 Pandas主要用来处理类表格数据(excel,csv),提供了计算接口,可用Numpy或其它方式进行计算。 NumPy 主要用来处理数值数据(尤其是矩阵,向量为核心的),本质上是纯

    2024年02月02日
    浏览(49)
  • [通用]计算机经典面试题基础篇Day3

    1、请说明mysql的两种主要引擎 MySQL有多种存储引擎,但最常见的两种主要引擎是InnoDB和MyISAM。 2、说一下mysql这两种引擎的使用场景 MySQL的两种主要引擎,InnoDB和MyISAM,各自适用于不同的使用场景,以下是它们的主要用途和适合的应用场景: InnoDB引擎: 事务支持:InnoDB是MyS

    2024年02月09日
    浏览(36)
  • Python学习(2)-NumPy矩阵与通用函数

    文章首发于:My Blog 欢迎大佬们前来逛逛 data:表示输入的 数组 或者 字符串 ,使用‘,’分割列,使用‘;’分割行 创建两个普通的矩阵: 需要注意:mat创建的矩阵是不会产生副本的,即 共享内存 : matrix也是创建矩阵的: data:数组或者字符串,与mat一样 copy:表示创建

    2024年03月25日
    浏览(31)
  • 十大边缘计算基础设施管理解决方案提供商:为企业数字化转型保驾护航

    “盘点:2022年十大边缘计算基础设施管理解决方案提供商转载” 随着数字化时代的到来,数据的产生和处理量呈现爆炸式增长,传统的集中式计算已经难以满足人们对计算效率的需求,边缘计算作为一种新型计算模式应运而生。边缘计算将计算和数据存储推向离用户更近的

    2024年02月04日
    浏览(50)
  • 云计算是指利用互联网所提供的基础设施、网络服务和平台,实现数据中心的虚拟化、动态管理、自动化运维功能

    作者:禅与计算机程序设计艺术 云计算是指利用互联网所提供的基础设施、网络服务和平台,实现数据中心的虚拟化、动态管理、自动化运维功能。传统的数据中心的资源由专业IT人员手动管理,而云计算则让硬件资源可按需弹性扩展、弹性迁移、自动化伸缩、降低成本。

    2024年02月08日
    浏览(50)
  • 【深度学习实验】NumPy的简单用法

    目录 一、NumPy介绍 1. 官网 2. 官方教程 二、实验内容 1. 导入numpy库 2. 打印版本号 3. arange 函数 4. array函数 5. reshape函数 6. 矩阵点乘(逐元素相乘) 7. 矩阵乘法       NumPy是一个常用于科学计算的Python库,尤其在深度学习和机器学习中应用广泛。 NumPyhttps://numpy.org/   NumPy:初

    2024年02月10日
    浏览(39)
  • 使用代码生成工具快速开发应用-结合后端Web API提供接口和前端页面快速生成,实现通用的业务编码规则管理

    在前面随笔《在Winform应用中增加通用的业务编码规则生成》,我介绍了基于Winform和WPF的一个通用的业务编码规则的管理功能,本篇随笔介绍基于后端Web API接口,实现快速的Vue3+ElementPlus前端界面的开发整合,同样是基于代码生成工具实现快速的前端代码的生成处理。 在前面

    2024年02月04日
    浏览(44)
  • 科学计算库—numpy随笔

    本质是多维 数组对象 list 类型转为 numpy 数组 更有利科学计算 8.1.1、为什么用 numpy? 1.虽然Python数组结构中的列表list实际上就是数组,但是列表list保存的是对象的指针,list中的元素在系统内存中是分散存储的,例如[0,1,2]需要3个指针和3个整数对象,浪费内存和计算时间。

    2024年02月02日
    浏览(66)
  • 科学计算库——numpy

    numpy作为高性能科学计算和数据分析的基础包,它是众多数据分析、机器学习等工具的基础架构,掌握numpy的功能及其用法将有助于后续其他数据分析工具的学习。本章将针对numpy库的基础功能进行详细地讲解。 numpy中提供了一个重要的数据结构是ndarray(又称为array)对象,该

    2023年04月23日
    浏览(39)
  • Android App保活的方式

    在Android系统中,当应用程序进入后台或者被用户关闭后,系统会自动回收该应用程序的资源,以达到优化系统性能的目的。但是,有些应用程序需要在后台长时间运行,比如音乐播放器、即时通讯等,这时就需要使用一些技术手段来保持应用程序的运行状态,以确保应用程序

    2024年02月16日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包