【机器学习】Kullback-Leibler散度实现数据监控

这篇具有很好参考价值的文章主要介绍了【机器学习】Kullback-Leibler散度实现数据监控。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

一、说明

        本篇叙述了KL 散度的数学、直觉和如何实际使用;以及它如何最好地用于过程监测。Kullback-Leibler 散度度量(相对熵)是信息论中的一种统计测量方法,通常用于量化一个概率分布与参考概率分布之间的差异。

        虽然 KL 散度很受欢迎,但它有时会被误解。在实践中,有时也很难知道何时使用一种统计距离检查而不是另一种。这篇博文介绍了如何使用 KL 散度、它在实践中的工作原理,以及何时应该和不应该使用 KL 散度来监控漂移。

二、背景知识

2.1 散度和距离的关系

        统计模型的度量方法,因为部分满足距离空间的条件,因而不能叫距离,叫散度。

        在统计学、概率论和信息论中,统计距离量化了两个统计对象之间的距离,可以是两个随机变量,也可以是两个概率分布或样本,也可以是单个样本点与总体或总体之间的距离。更广泛的点样本。

        总体之间的距离可以解释为测量两个概率分布之间的距离,因此它们本质上是概率测量之间距离的测量。当统计距离度量与随机变量之间的差异相关时,这些可能具有统计相关性,[1] 因此这些距离与概率度量之间的距离度量没有直接关系。同样,衡量随机变量之间的距离可文章来源地址https://www.toymoban.com/news/detail-493909.html

到了这里,关于【机器学习】Kullback-Leibler散度实现数据监控的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据处理 | Matlab实现Lichtenberg算法的机器学习数据选择

    效果一览 基本介绍 Matlab实现Lichtenberg算法的机器学习数据选择 Lichtenberg算法适用于回归和分类数据集,并根据数量和最大覆盖范围选择最佳算法。Lichtenberg算法(Lichtenberg algorithm,LA)是由Pereira等人于2021年提出的一种新型智能优化算法,它是受闪电传播这一物理现象启发而产

    2024年02月16日
    浏览(51)
  • 数据仓库的数据科学与机器学习:实现智能化的数据分析

    数据仓库是一种用于存储和管理大量结构化数据的系统,它通常用于企业和组织的业务分析和决策支持。数据科学和机器学习是数据分析的两个重要领域,它们可以帮助企业和组织从大量数据中发现隐藏的知识和模式,从而提高业务效率和竞争力。 在过去的几年里,随着数据

    2024年04月13日
    浏览(242)
  • [机器学习、Spark]Spark MLlib实现数据基本统计

    👨‍🎓👨‍🎓博主:发量不足 📑📑本期更新内容: Spark MLlib基本统计 📑📑下篇文章预告:Spark MLlib的分类🔥🔥 简介:耐心,自信来源于你强大的思想和知识基础!!   目录 Spark MLlib基本统计 一.摘要统计 二.相关统计 三.分层抽样   MLlib提供了很多统计方法,包含

    2024年02月02日
    浏览(48)
  • 大数据毕设项目 - 深度学习 机器学习 酒店评价情感分析算法实现

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(40)
  • 【大数据毕设选题】基于CNN实现谣言检测 - python 深度学习 机器学习

    Hi,大家好,今天向大家介绍 一个深度学习项目 基于CNN实现谣言检测 社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。 本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言

    2024年01月20日
    浏览(61)
  • 【机器学习】VAE算法的pytorch实现-MNIST手写数据识别

    序言 承接上文 VAE变分自编码器学习笔记 一文介绍了VAE算法的设计思路、原理、公式推导以及作者本人对VAE模型的理解 这里继续就VAE算法的实现进行学习,为模型能够应用到工作中做准备 1. 环境配置 (1)我们使用pytorch来训练模型,首先导入必要的库(模块module、包package)

    2024年02月13日
    浏览(48)
  • 机器学习——使用朴素贝叶斯分类器实现垃圾邮件检测(python代码+数据集)

    机器学习——scikit-learn库学习、应用 机器学习——最小二乘法拟合曲线、正则化 机器学习——使用朴素贝叶斯分类器实现垃圾邮件检测(python代码+数据集) 贝叶斯公式: P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A mid B)=frac{P(A) P(B mid A)}{P(B)} P ( A ∣ B ) = P ( B ) P ( A ) P ( B ∣ A )

    2024年02月10日
    浏览(45)
  • python数据分析之利用多种机器学习方法实现文本分类、情感预测

           大家好,我是带我去滑雪!        文本分类是一种机器学习和自然语言处理(NLP)任务,旨在将给定的文本数据分配到预定义的类别或标签中。其目标是为文本数据提供自动分类和标注,使得可以根据其内容或主题进行组织、排序和分析。文本分类在各种应用场景

    2024年02月11日
    浏览(33)
  • 联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题

      这联邦学习呢,就是让不同的地方一起弄一个学习的模型,但重要的是,大家的数据都是自己家的,不用给别人。 这样一来,人家的秘密就不会到处乱跑(数据不出本地),又能合力干大事。   <没有联邦学习的情况> 在没有联邦学习的情况下,医院面临的一个主要问题

    2024年01月23日
    浏览(51)
  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

    随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

    2024年02月03日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包