机器学习15-1(无监督学习算法)

这篇具有很好参考价值的文章主要介绍了机器学习15-1(无监督学习算法)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

  • 此前,无论是回归问题还是分类问题,本质上其实都属于有监督学习范畴:即算法的学习是在标签的监督下进行规律学习,也就是学习那些能够对标签分类或者数值预测起作用的规律
  • 而无监督学习,则是在没有标签的数据集中进行规律挖掘,既然没有标签,自然也就没有了规律是否对预测结果有效一说,也就失去了对挖掘规律的“监督”过程,这也就是无监督算法的由来
  • 而如果一个数据集没有标签,我们就只能围绕特征矩阵进行规律挖掘,更具体的来说,面对没有标签的数据集,

文章来源地址https://www.toymoban.com/news/detail-493994.html

到了这里,关于机器学习15-1(无监督学习算法)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习简介[01/2]:简单线性回归

    Python 中的机器学习简介:简单线性回归         简单线性回归为机器学习提供了优雅的介绍。它可用于标识自变量和因变量之间的关系。使用梯度下降,可以训练基本模型以拟合一组点以供未来预测。         这是涵盖回归、梯度下降、分类和机器学习的其他基本方

    2024年02月11日
    浏览(40)
  • 机器学习-无监督算法之降维

    降维:将训练数据中的样本从高维空间转换到低维空间,降维是对原始数据线性变换实现的。 为什么要降维?高维计算难,泛化能力差,防止维数灾难 优点:减少冗余特征,方便数据可视化,减少内存。 缺点:可能丢失数据,需要确定保留多少主成分 把一个矩阵拆成三个,

    2024年02月07日
    浏览(36)
  • ML:机器学习中有监督学习算法的四种最基础模型的简介(基于概率的模型、线性模型、树模型-树类模型、神经网络模型)、【线性模型/非线性模型、树类模型/基于样本距离的模型】多种对比(假设/特点/决策形式等

    ML:机器学习中有监督学习算法的四种最基础模型的简介(基于概率的模型、线性模型、树模型-树类模型、神经网络模型)、【线性模型/非线性模型、树类模型/基于样本距离的模型】多种对比(假设/特点/决策形式等) 目录

    2024年02月09日
    浏览(58)
  • 【机器学习】几种常见的无监督学习算法

    本系列包含: 几种常见的有监督学习算法 几种常见的无监督学习算法 降维是指在保留数据特征的前提下,以少量的变量表示有许多变量的数据,这有助于降低多变量数据分析的复杂度。减少数据变量的方法有两种:一种是只选择重要的变量,不使用其余变量;另一种是基于

    2023年04月09日
    浏览(50)
  • Python 中的机器学习简介:多项式回归

            多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。         多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回

    2024年02月13日
    浏览(44)
  • python算法中的机器学习算法之无监督学习知识点(详解)

    目录 学习目标: 学习内容: Ⅰ. K均值聚类(K-Means Clustering) Ⅱ. 层次聚类(Hierarchical Clusteri

    2024年02月01日
    浏览(45)
  • 机器学习——多元线性回归算法

    多元线性回归算法,即多特征量线性回归算法,用多个特征量来进行预测,如这里用多个特征量(房子面积、卧室数量、房屋楼层数、房子年龄)来预测房子的售价问题 假如有一个多特征量的机器学习问题,并且这个问题中的多个特征可以在一个相近的范围内取值,那么可以

    2024年02月22日
    浏览(45)
  • 【机器学习】十大算法之一 “逻辑回归”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月10日
    浏览(38)
  • 【机器学习】十大算法之一 “线性回归”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月09日
    浏览(36)
  • 机器学习算法之-逻辑回归(2)

            特征与标签之间的线性关系极强的数据,比如金融领域中的 信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包