视觉SLAM十四讲——ch10实践(后端2)

这篇具有很好参考价值的文章主要介绍了视觉SLAM十四讲——ch10实践(后端2)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 实践前小知识介绍

视觉SLAM(Simultaneous Localization and Mapping)后端是一种用于处理视觉SLAM问题的算法。视觉SLAM是指机器在未知环境中同时实现自身的定位和地图构建的技术。

视觉SLAM后端的任务是在视觉SLAM中负责维护一个优化后的地图和机器人的轨迹。常见的视觉SLAM后端算法包括基于图优化的方法,如G2O、ceres等,以及基于滤波器的方法,如卡尔曼滤波器、扩展卡尔曼滤波器等。

视觉SLAM后端算法需要处理传感器数据的噪声和不确定性,并通过优化算法来减小误差和提高精度。同时,视觉SLAM后端算法还需要快速、高效地处理大量的数据,并对计算结果进行实时更新和优化。

视觉SLAM后端算法在自主驾驶、无人机、机器人等领域有广泛的应用。

1. 实践操作前的准备工作

  1. 在终端中进入ch10文件夹下,顺序执行以下命令进行编译。
mkdir build
cd build
cmake ..
//注意,j8还是其他主要看自己的电脑情况
make -j8
  1. 在build文件中进行运行。
    注意: 在make过程中,会出现warning,但是对我们此实践的过程几乎没有影响。

2. 实践过程

2.1 g2o原生位姿图

在build中执行语句:

 ./pose_graph_g2o_SE3 /home/fighter/slam/slambook2/ch10/sphere.g2o

运行结果:
生成文件result.g2o;终端输出:

read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0     chi2= 1023011093.967641         time= 0.616354  cumTime= 0.616354       edges= 9799     schur= 0        lambda= 805.622433      levenbergIter= 1
iteration= 1     chi2= 385118688.233187  time= 0.363139  cumTime= 0.979494       edges= 9799     schur= 0        lambda= 537.081622      levenbergIter= 1
iteration= 2     chi2= 166223726.693657  time= 0.350041  cumTime= 1.32953        edges= 9799     schur= 0        lambda= 358.054415      levenbergIter= 1
iteration= 3     chi2= 86610874.269316   time= 0.351792  cumTime= 1.68133        edges= 9799     schur= 0        lambda= 238.702943      levenbergIter= 1
iteration= 4     chi2= 40582782.710190   time= 0.388134  cumTime= 2.06946        edges= 9799     schur= 0        lambda= 159.135295      levenbergIter= 1
iteration= 5     chi2= 15055383.753041   time= 0.377086  cumTime= 2.44655        edges= 9799     schur= 0        lambda= 101.425210      levenbergIter= 1
iteration= 6     chi2= 6715193.487655    time= 0.363641  cumTime= 2.81019        edges= 9799     schur= 0        lambda= 37.664667       levenbergIter= 1
iteration= 7     chi2= 2171949.168382    time= 0.383848  cumTime= 3.19404        edges= 9799     schur= 0        lambda= 12.554889       levenbergIter= 1
iteration= 8     chi2= 740566.827049     time= 0.376922  cumTime= 3.57096        edges= 9799     schur= 0        lambda= 4.184963        levenbergIter= 1
iteration= 9     chi2= 313641.802464     time= 0.367001  cumTime= 3.93796        edges= 9799     schur= 0        lambda= 2.583432        levenbergIter= 1
iteration= 10    chi2= 82659.743578      time= 0.356125  cumTime= 4.29408        edges= 9799     schur= 0        lambda= 0.861144        levenbergIter= 1
iteration= 11    chi2= 58220.369189      time= 0.326571  cumTime= 4.62065        edges= 9799     schur= 0        lambda= 0.287048        levenbergIter= 1
iteration= 12    chi2= 52214.188561      time= 0.34423   cumTime= 4.96488        edges= 9799     schur= 0        lambda= 0.095683        levenbergIter= 1
iteration= 13    chi2= 50948.580336      time= 0.344858  cumTime= 5.30974        edges= 9799     schur= 0        lambda= 0.031894        levenbergIter= 1
iteration= 14    chi2= 50587.776729      time= 0.323255  cumTime= 5.633  edges= 9799     schur= 0        lambda= 0.016436        levenbergIter= 1
iteration= 15    chi2= 50233.038802      time= 0.321105  cumTime= 5.9541         edges= 9799     schur= 0        lambda= 0.010957        levenbergIter= 1
iteration= 16    chi2= 49995.082839      time= 0.321401  cumTime= 6.2755         edges= 9799     schur= 0        lambda= 0.007305        levenbergIter= 1
iteration= 17    chi2= 48876.738967      time= 0.702032  cumTime= 6.97753        edges= 9799     schur= 0        lambda= 0.009298        levenbergIter= 2
iteration= 18    chi2= 48806.625522      time= 0.373531  cumTime= 7.35107        edges= 9799     schur= 0        lambda= 0.006199        levenbergIter= 1
iteration= 19    chi2= 47790.891373      time= 0.764476  cumTime= 8.11554        edges= 9799     schur= 0        lambda= 0.008265        levenbergIter= 2
iteration= 20    chi2= 47713.626582      time= 0.344026  cumTime= 8.45957        edges= 9799     schur= 0        lambda= 0.005510        levenbergIter= 1
iteration= 21    chi2= 46869.323689      time= 0.698816  cumTime= 9.15838        edges= 9799     schur= 0        lambda= 0.007347        levenbergIter= 2
iteration= 22    chi2= 46802.585509      time= 0.359225  cumTime= 9.51761        edges= 9799     schur= 0        lambda= 0.004898        levenbergIter= 1
iteration= 23    chi2= 46128.758041      time= 0.631884  cumTime= 10.1495        edges= 9799     schur= 0        lambda= 0.006489        levenbergIter= 2
iteration= 24    chi2= 46069.133541      time= 0.309911  cumTime= 10.4594        edges= 9799     schur= 0        lambda= 0.004326        levenbergIter= 1
iteration= 25    chi2= 45553.862164      time= 0.622007  cumTime= 11.0814        edges= 9799     schur= 0        lambda= 0.005595        levenbergIter= 2
iteration= 26    chi2= 45511.762616      time= 0.311606  cumTime= 11.393         edges= 9799     schur= 0        lambda= 0.003730        levenbergIter= 1
iteration= 27    chi2= 45122.762999      time= 0.61714   cumTime= 12.0102        edges= 9799     schur= 0        lambda= 0.004690        levenbergIter= 2
iteration= 28    chi2= 45095.174397      time= 0.31117   cumTime= 12.3213        edges= 9799     schur= 0        lambda= 0.003127        levenbergIter= 1
iteration= 29    chi2= 44811.248505      time= 0.608863  cumTime= 12.9302        edges= 9799     schur= 0        lambda= 0.003785        levenbergIter= 2
saving optimization results ...

实践中使用的时列文伯格—马夸尔特下降的方式,迭代次数选择的三十次。
打开文件result.g2o:
在终端运行:

g2o_viewer result.g2o

运行图为(使用g2o自带的顶点与边求解的结果):
视觉SLAM十四讲——ch10实践(后端2)

2.2 李代数上的位姿图优化

在build中执行语句:

 ./pose_graph_g2o_lie /home/fighter/slam/slambook2/ch10/sphere.g2o

运行结果:
生成文件result_lie.g2o;终端输出:

read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0     chi2= 674837160.579968  time= 0.419014  cumTime= 0.419014       edges= 9799     schur= 0        lambda= 6658.554263     levenbergIter= 1
iteration= 1     chi2= 234706314.970484  time= 0.307203  cumTime= 0.726217       edges= 9799     schur= 0        lambda= 2219.518088     levenbergIter= 1
iteration= 2     chi2= 142146174.348537  time= 0.306181  cumTime= 1.0324         edges= 9799     schur= 0        lambda= 739.839363      levenbergIter= 1
iteration= 3     chi2= 83834595.145595   time= 0.309102  cumTime= 1.3415         edges= 9799     schur= 0        lambda= 246.613121      levenbergIter= 1
iteration= 4     chi2= 41878079.903257   time= 0.314584  cumTime= 1.65608        edges= 9799     schur= 0        lambda= 82.204374       levenbergIter= 1
iteration= 5     chi2= 16598628.119947   time= 0.306542  cumTime= 1.96263        edges= 9799     schur= 0        lambda= 27.401458       levenbergIter= 1
iteration= 6     chi2= 6137666.739406    time= 0.306009  cumTime= 2.26864        edges= 9799     schur= 0        lambda= 9.133819        levenbergIter= 1
iteration= 7     chi2= 2182986.250589    time= 0.313833  cumTime= 2.58247        edges= 9799     schur= 0        lambda= 3.044606        levenbergIter= 1
iteration= 8     chi2= 732676.668220     time= 0.304348  cumTime= 2.88682        edges= 9799     schur= 0        lambda= 1.014869        levenbergIter= 1
iteration= 9     chi2= 284457.115176     time= 0.305686  cumTime= 3.1925         edges= 9799     schur= 0        lambda= 0.338290        levenbergIter= 1
iteration= 10    chi2= 170796.109734     time= 0.317388  cumTime= 3.50989        edges= 9799     schur= 0        lambda= 0.181974        levenbergIter= 1
iteration= 11    chi2= 145466.315841     time= 0.305792  cumTime= 3.81568        edges= 9799     schur= 0        lambda= 0.060658        levenbergIter= 1
iteration= 12    chi2= 142373.179501     time= 0.347022  cumTime= 4.16271        edges= 9799     schur= 0        lambda= 0.020219        levenbergIter= 1
iteration= 13    chi2= 137485.756901     time= 0.304775  cumTime= 4.46748        edges= 9799     schur= 0        lambda= 0.006740        levenbergIter= 1
iteration= 14    chi2= 131202.175665     time= 0.311505  cumTime= 4.77899        edges= 9799     schur= 0        lambda= 0.002247        levenbergIter= 1
iteration= 15    chi2= 128006.202529     time= 0.30704   cumTime= 5.08603        edges= 9799     schur= 0        lambda= 0.000749        levenbergIter= 1
iteration= 16    chi2= 127587.860945     time= 0.313496  cumTime= 5.39952        edges= 9799     schur= 0        lambda= 0.000250        levenbergIter= 1
iteration= 17    chi2= 127578.599359     time= 0.322269  cumTime= 5.72179        edges= 9799     schur= 0        lambda= 0.000083        levenbergIter= 1
iteration= 18    chi2= 127578.573853     time= 0.326536  cumTime= 6.04833        edges= 9799     schur= 0        lambda= 0.000028        levenbergIter= 1
iteration= 19    chi2= 127578.573840     time= 0.328882  cumTime= 6.37721        edges= 9799     schur= 0        lambda= 0.000018        levenbergIter= 1
iteration= 20    chi2= 127578.573840     time= 0.315369  cumTime= 6.69258        edges= 9799     schur= 0        lambda= 0.000012        levenbergIter= 1
iteration= 21    chi2= 127578.573840     time= 0.308945  cumTime= 7.00152        edges= 9799     schur= 0        lambda= 0.000008        levenbergIter= 1
iteration= 22    chi2= 127578.573840     time= 3.00403   cumTime= 10.0056        edges= 9799     schur= 0        lambda= 296083660142.312988    levenbergIter= 10
saving optimization results ...

可以发现,迭代23次后,总体误差保持不变,事实上可以让优化算法停止。
打开文件result_lie.g2o:
在终端运行:

g2o_viewer result_lie.g2o

运行图为(使用李代数自定义节点与优化后的结果):
视觉SLAM十四讲——ch10实践(后端2)

单击窗口中的Optimize按钮,g2o将使用它自带的SE3顶点进行优化,可以在窗口下方的文本框看到以下内容:

loaded result_lie.g2o with 2500 vertices and 9799 measurements
graph is fixed by node 2499
# Using CHOLMOD poseDim -1 landMarkDim -1 blockordering 1
Preparing (no marginalization of Landmarks)
iteration= 0	 chi2= 44360.504602	 time= 1.01586	 cumTime= 1.01586	 edges= 9799	 schur= 0
iteration= 1	 chi2= 44360.466873	 time= 0.247692	 cumTime= 1.26355	 edges= 9799	 schur= 0
iteration= 2	 chi2= 44360.466872	 time= 0.253022	 cumTime= 1.51658	 edges= 9799	 schur= 0
iteration= 3	 chi2= 44360.466872	 time= 0.247728	 cumTime= 1.7643	 edges= 9799	 schur= 0
iteration= 4	 chi2= 44360.466872	 time= 0.272316	 cumTime= 2.03662	 edges= 9799	 schur= 0
iteration= 5	 chi2= 44360.466872	 time= 0.249167	 cumTime= 2.28579	 edges= 9799	 schur= 0
iteration= 6	 chi2= 44360.466872	 time= 0.248997	 cumTime= 2.53478	 edges= 9799	 schur= 0
iteration= 7	 chi2= 44360.466872	 time= 0.28726	 cumTime= 2.82204	 edges= 9799	 schur= 0
iteration= 8	 chi2= 44360.466872	 time= 0.243892	 cumTime= 3.06594	 edges= 9799	 schur= 0
iteration= 9	 chi2= 44360.466872	 time= 0.245539	 cumTime= 3.31148	 edges= 9799	 schur= 0

3. 遇到的问题及解决办法

3.1 在运行pose_graph_g2o_lie时出现错误

  1. 出现的错误如下所示:
Sophus ensure failed in function 'void Sophus::SO3Base<Derived>::normalize() [with Derived = Sophus::SO3<double>]', file '/usr/local/include/sophus/so3.hpp', line 273.
Quaternion (   0.706662 4.32706e-17    0.707551 -4.3325e-17) should not be close to zero!
Aborted

原因:

顶点类VertexSE3LieAlgebra的读入函数virtual bool read(istream& is)缺少返回值,会报以上错误。

解决办法:

在函数 virtual bool read(istream& is) 中加入 return true;文章来源地址https://www.toymoban.com/news/detail-494080.html

到了这里,关于视觉SLAM十四讲——ch10实践(后端2)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【视觉SLAM十四讲学习笔记】第五讲——相机模型

    专栏系列文章如下: 【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍 【视觉SLAM十四讲学习笔记】第二讲——初识SLAM 【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵 【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角 【视觉SLAM十四讲学习笔记】第三讲——四元数 【视

    2024年01月17日
    浏览(42)
  • 《视觉 SLAM 十四讲》V2 第 5 讲 相机与图像

    空间点 投影到 相机成像平面 前面内容总结: 1、机器人如何表示自身位姿 视觉SLAM: 观测 主要是指 相机成像 的过程 。 投影过程描述: 针孔 + 畸变 相机 内参 外参 像素坐标系 与 成像平面之间,相差了一个缩放 和一个原点的平移。 像素坐标系: 原点 o ′ o^{prime} o ′ 位

    2024年02月07日
    浏览(45)
  • 视觉SLAM十四讲|【五】相机与IMU时间戳同步

    Z [ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ X Y Z ] = K P Z begin{bmatrix} u \\\\ v \\\\ 1 end{bmatrix}= begin{bmatrix} f_x 0 c_x \\\\ 0 f_y c_y \\\\ 0 0 1 end{bmatrix} begin{bmatrix} X \\\\ Y \\\\ Z end{bmatrix}= KP Z ​ u v 1 ​ ​ = ​ f x ​ 0 0 ​ 0 f y ​ 0 ​ c x ​ c y ​ 1 ​ ​ ​ X Y Z ​ ​ = K P 其中, K = [ f x 0 c x 0 f y c y 0 0

    2024年01月20日
    浏览(49)
  • 《视觉 SLAM 十四讲》V2 第 4 讲 李群与李代数 【什么样的相机位姿 最符合 当前观测数据】

    P71 什么样的相机位姿 最符合 当前观测数据。 求解最优的 R , t bm{R, t} R , t , 使得误差最小化。 群 : 只有一个(良好的)运算的集合。 封结幺逆 、 丰俭由你 李群 : 具有连续(光滑)性质的群。 在 t = 0 附近,旋转矩阵可以由 e x p ( ϕ 0 ∧ t ) exp(phi_0^{land}t) e x p ( ϕ 0 ∧ ​ t

    2024年02月07日
    浏览(52)
  • slam十四讲~环境安装以及问题记录

    参考资料: https://zhuanlan.zhihu.com/p/452256687 https://blog.csdn.net/qq_38629044/article/details/95355859 https://blog.csdn.net/Bonaventure/article/details/122835996 https://blog.csdn.net/weixin_44986556/article/details/108962861 https://blog.csdn.net/qq_38364548/article/details/122055690 https://blog.csdn.net/rong11417/article/details/103905794 http

    2023年04月15日
    浏览(41)
  • 视觉SLAM14讲笔记-第10讲-后端1

    我们可以看到,前端视觉里程计能给出一个短时间内的轨迹和地图,但由于不可避免的误差累积,这个地图在长时间内是不准确的。所以怎么办?我们人类自己在现实世界中会记录自己走了多少米,还有就是使用路面的标志物来辅助定位,和机器人的方式也是相同的,即同时

    2024年02月09日
    浏览(33)
  • 视觉SLAM ch12 建图(RGB-D)

    一、RGB-D稠密建图 RGB-D相机 通结构光和飞行时间获取深度。 稠密重建方法 :根据估计的相机位姿,将RGB-D数据转化为点云,然后进行拼接,最终得到由离散的点组成的 点云地图 。 在此基础上,如果希望估计物体的表面,可以用三角网格(Mesh)和面片(Surfel)进行建图;如

    2023年04月18日
    浏览(47)
  • 手撕 视觉slam14讲 ch7 / pose_estimation_3d2d.cpp (1)

     1. 读图,两张rgb(cv::imread)  2. 找到两张rgb图中的特征点匹配对        2.1定义所需要的参数:keypoints1, keypoints2,matches        2.2 提取每张图像的检测 Oriented FAST 角点位置并匹配筛选(调用功能函数1)  3. 建立3d点(像素坐标到相机坐标)         3.1读出深度图(c

    2024年02月10日
    浏览(43)
  • 视觉SLAM理论到实践系列(四)——相机模型

    下面是《视觉SLAM十四讲》学习笔记的系列记录的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 高翔博士的《视觉SLAM14讲》学习笔记的系列记录 相机将三维世界中的坐标点(单位为米)映射到二维图像平面(单位为像素)的过程能够用一个几何模型进行

    2024年02月04日
    浏览(37)
  • 3D 视觉 相关知识-SLAM框架-常见方案对比

    点云数据 通过测量仪器获得 物体外观 的点数据的集合,叫 点云 。点云是在和目标表面特性的海量点集合。 点云是在和目标表面特性的海量点集合。 根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维

    2024年02月13日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包