大数据处理架构Hadoop

这篇具有很好参考价值的文章主要介绍了大数据处理架构Hadoop。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概述

Hadoop简介

  • Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构
  • Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中
  • Hadoop的核心是分布式文件系统HDFS(Hadoop Distributed File System)和MapReduce

Hadoop的特性

Hadoop是一个能够对大量数据进行分布式处理的软件框架,并且是以一种可靠、高效、可伸缩的方式进行处理的,它具有以下几个方面的特性:

  • 高可靠性
  • 高效性
  • 高可扩展性
  • 高容错性
  • 成本低
  • 运行在Linux平台上
  • 支持多种编程语言

Hadoop项目架构

Hadoop的项目结构不断丰富发展,已经形成一个丰富的Hadoop生态系统:
大数据处理架构Hadoop
大数据处理架构Hadoop

Hadoop的安装和使用

Hadoop的安装方式

  • 单机模式:Hadoop 默认模式为非分布式模式(本地模式),无需进行其他配置即可运行。非分布式即单 Java 进程,方便进行调试
  • 伪分布式模式:Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件
  • 分布式模式:使用多个节点构成集群环境来运行Hadoop

Hadoop的安装配置(单机/伪分布式)

  • 创建Hadoop用户
  • SSH登录权限设置
  • 安装Java环境
  • 单机安装配置
  • 伪分布式安装配置

SSH登录权限设置

SSH是什么?

  • SSH 为 Secure Shell 的缩写,是建立在应用层和传输层基础上的安全协议。
  • SSH 是目前较可靠、专为远程登录会话和其他网络服务提供安全性的协议。
  • 利用SSH协议可以有效防止远程管理过程中的信息泄露问题
  • SSH是由客户端和服务端的软件组成,服务端是一个守护进程(daemon),它在后台运行并响应来自客户端的连接请求,客户端包含ssh程序以及像scp(远程拷贝)、slogin(远程登陆)、sftp(安全文件传输)等其他的应用程序。

配置SSH的原因
Hadoop名称节点(NameNode)需要启动集群中所有机器的Hadoop守护进程,这个过程需要通过SSH登录来实现。Hadoop并没有提供SSH输入密码登录的形式,因此,为了能够顺利登录每台机器,需要将所有机器配置为名称节点可以无密码登录。

单机安装配置

Hadoop 解压后即可使用,默认模式为非分布式模式(本地模式),无需进行其他配置即可运行。

伪分布式安装配置

  • Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件
  • Hadoop的配置文件位于/usr/local/hadoop/etc/hadoop/中,伪分布式需要修改2个配置文件core-site.xml和hdfs-site.xml
  • Hadoop的配置文件是xml格式,每个配置以声明property的name和value的方式来实现

关于三种Shell命令方式的区别:

  1. hadoop fs
  2. hadoop dfs
  3. hdfs dfs

hadoop fs适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统
hadoop dfs只能适用于HDFS文件系统
hdfs dfs跟hadoop dfs的命令作用一样,也只能适用于HDFS文件系统

Hadoop集群的部署与使用

Hadoop集群中有哪些节点类型

  • Hadoop框架中最核心的设计是为海量数据提供存储的HDFS和对数据进行计算的MapReduce
  • MapReduce的作业主要包括:(1)从磁盘或从网络读取数据,即IO密集工作;(2)计算数据,即CPU密集工作
  • Hadoop集群的整体性能取决于CPU、内存、网络以及存储之间的性能平衡。因此运营团队在选择机器配置时要针对不同的工作节点选择合适硬件类型
  • 一个基本的Hadoop集群中的节点主要有:
    NameNode:负责协调集群中的数据存储
    DataNode:存储被拆分的数据块
    JobTracker:协调数据计算任务
    TaskTracker:负责执行由JobTracker指派的任务
    SecondaryNameNode:帮助NameNode收集文件系统运行的状态信息

集群规模要多大

  • Hadoop集群规模可大可小,初始时,可以从一个较小规模的集群开始,比如包含10个节点,然后,规模随着存储器和计算需求的扩大而扩大。
  • 如果数据每周增大1TB,并且有三个HDFS副本,然后每周需要一个额外的3TB作为原始数据存储。要允许一些中间文件和日志(假定30%)的空间,由此,可以算出每周大约需要增加一台新机器。存储两年数据的集群,大约需要100台机器。
  • 对于一个小的集群,名称节点(NameNode)和JobTracker运行在单个节点上,通常是可以接受的。但是,随着集群和存储在HDFS中的文件数量的增加,名称节点需要更多的主存,这时,名称节点和JobTracker就需要运行在不同的节点上。
  • 第二名称节点(SecondaryNameNode)会和名称节点可以运行在相同的机器上,但是,由于第二名称节点和名称节点几乎具有相同的主存需求,因此,二者最好运行在不同节点上。

集群网络拓扑

  • 普通的Hadoop集群结构由一个两阶网络构成
  • 每个机架(Rack)有30-40个服务器,配置一个1GB的交换机,并向上传输到一个核心交换机或者路由器(1GB或以上)
  • 在相同的机架中的节点间的带宽的总和,要大于不同机架间的节点间的带宽总和
    大数据处理架构Hadoop

集群的建立与安装

采购好相关的硬件设备后,就可以把硬件装入机架,安装并运行Hadoop。
安装Hadoop有多种方法:
(1)手动安装
(2)自动化安装
Hadoop不仅可以运行在企业内部的集群中,也可以运行在云计算环境中。文章来源地址https://www.toymoban.com/news/detail-494440.html

到了这里,关于大数据处理架构Hadoop的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据处理中的数据处理与算法优化:机器学习在Hadoop处理中的应用

    作者:禅与计算机程序设计艺术 大数据处理中的数据处理与算法优化:机器学习在Hadoop处理中的应用 引言 随着大数据时代的到来,大量的数据处理需求不断增加,数据处理质量和效率成为企业、政府、科研机构等用户关注的焦点。机器学习作为一种新兴的数据处理技术,在

    2024年02月13日
    浏览(53)
  • 利用Hadoop处理离线数据:Hive和Spark离线数据处理实现

    作者:禅与计算机程序设计艺术 引言 随着大数据时代的到来,越来越多的数据产生于各种业务系统。这些数据往往需要在离线环境中进行处理,以降低数据处理的时间和成本。Hadoop作为目前最为流行的分布式计算框架,提供了强大的离线数据处理能力。Hive和Spark作为Hadoop生

    2024年02月11日
    浏览(44)
  • Python数据攻略-Hadoop集群中PySpark数据处理

    Hadoop是一个开源的分布式存储和计算框架。它让我们可以在多台机器上存储大量的数据,并且进行高效的数据处理。简而言之,Hadoop就像一个巨大的仓库,可以存放海量的数据,并且有高效的工具来处理这些数据。

    2024年02月07日
    浏览(46)
  • 1.0数据采集与预处理概述

    大数据的来源: 1.搜索引擎数据 2.电商交易数据 3.社交网络数据 4.物联网传感器数据 5.网站日志数据 数据采集的概念: 数据采集的ETL 工具负责将分布的、异构数据源中的不同种类,和结构的数据如文本数据、关系数据以及图片、视频等非结构化数据等抽取到临时中间层后进

    2024年02月02日
    浏览(45)
  • 数据平台的实时处理:Streaming和Apache Kafka

    随着数据的增长和数据处理的复杂性,实时数据处理变得越来越重要。实时数据处理是指在数据产生时或者数据产生后的很短时间内对数据进行处理的技术。这种技术在各个领域都有广泛的应用,如实时推荐、实时监控、实时分析、实时语言翻译等。 在实时数据处理中,St

    2024年04月14日
    浏览(42)
  • Spark大数据处理讲课笔记4.1 Spark SQL概述、数据帧与数据集

      目录 零、本讲学习目标 一、Spark SQL (一)Spark SQL概述 (二)Spark SQL功能 (三)Spark SQL结构 1、Spark SQL架构图 2、Spark SQL三大过程 3、Spark SQL内部五大组件 (四)Spark SQL工作流程 (五)Spark SQL主要特点 1、将SQL查询与Spark应用程序无缝组合 2、Spark SQL以相同方式连接多种数据

    2024年02月09日
    浏览(64)
  • 基于Hadoop的云计算与大数据处理技术

    一、实验目的 1.了解Scala语言的基本语法 2.了解Spark Scala开发的原理 3.了解Spark Java API的使用 4.了解Spark的Scala API及Java API对数据处理的不同点 二、实验内容  某电商网站记录了大量用户对商品的收藏数据,并将数据存储在名为buyer_favorite1的文件中,数据格式以及数据内容如下

    2024年02月04日
    浏览(39)
  • Hadoop3.0大数据处理学习2(HDFS)

    HDFS:Hadoop Distributed File System。Hadoop分布式存储系统 一种允许文件通过网络在多台主机上分享的文件系统,可以让多机器上的用户分享文件和存储空间。 两大特性:通透性、容错性 分布式文件管理系统的实现很多,HDFS只是其中一种,HDSF不适合存储小文件。GFS、TFS。 使用格式

    2024年02月08日
    浏览(52)
  • Hadoop是一个开源的分布式处理系统,主要用于处理和存储大量数据

    Hadoop是一个开源的分布式处理系统,主要用于处理和存储大量数据。它是由Apache软件基金会开发的,现在已经成为大数据领域中广泛使用的技术之一。 Hadoop架构 Hadoop的架构包括以下几个主要组件: Hadoop Distributed File System (HDFS) : HDFS是Hadoop的核心组件之一,它是一个分布式文

    2024年02月04日
    浏览(58)
  • 【AI大数据】大规模数据集处理必备:Apache Mahout介绍、应用及优化

    作者:禅与计算机程序设计

    2024年02月16日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包