文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

这篇具有很好参考价值的文章主要介绍了文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

七、为使特征序列长度的下界变得更精确,请说明在 n 次硬币的公平抛掷中,不出现比Ign - 2lglgn 更长的连续正面特征序列的概率小于 1/n。

文心一言:

在 n 次硬币的公平抛掷中,每个硬币正、反面朝上的概率均为 1/2。让我们考虑一个事件 A,其表示在 n 次抛掷中不出现比连续 lgn 更长的连续正面特征序列。事件的 A 对立事件 B 由出现比连续 lgn 更长的连续正面特征序列组成。

根据德布鲁因下界,在 n 次硬币的公平抛掷中,出现比连续 lgn 更长的连续正面特征序列的概率的下界为 1/2^lgn。因此,事件 B 的概率的下界为 1/2^lgn。因此,事件 A 的概率为 1 - 1/2^lgn。

由于我们希望在 n 次硬币的公平抛掷中,不出现比连续 lgn 更长的连续正面特征序列的概率小于 1/n,因此我们需要确保事件 A 的概率大于 1/n,即 1 - 1/2^lgn > 1/n。

解上述不等式,我们得到:

1 - 1/n > 1/2^lgn

化简后得到:

2^lgn > n/(n-1)

对两边取对数,得到:

lgn > log(n/(n-1))

由于 log(n/(n-1)) < log(1+1/n),且当 n>1 时,log(1+1/n) 的极限为 ln2,因此:

lgn < ln2

因此,为了使特征序列长度的下界变得更精确,我们需要在 n 次硬币的公平抛掷中,定义一个比连续 lgn 更小的下界,可以使用以下不等式:

2^(lgn - ln2) < n/(n-1)

对该不等式两边取对数,得到:

lgn - ln2 < log(n/(n-1))

因此,新的下界为 lgn - ln2,它比原始的 lgn 更精确。

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

讯飞星火:

本题考查概率的求法,是中档题,解题时要认真审题,注意等比数列、n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用。

设第i个特征序列的长度为 a i a_{i} ai,则 a 1 = 2 a_{1}=2 a1=2, a 2 = 4 a_{2}=4 a2=4, a 3 = 8 a_{3}=8 a3=8, … \ldots ,由已知得 { a i } \{a_{i}\} {ai}为公比为2的等比数列,由此能求出不出现比 I g n − 2 lg ⁡ lg ⁡ n Ign-2\lg\lg n Ign2lglgn更长的连续正面特征序列的概率小于 1 n \dfrac{1}{n} n1.

解:设第i个特征序列的长度为 a i a_{i} ai,则 a 1 = 2 a_{1}=2 a1=2, a 2 = 4 a_{2}=4 a2=4, a 3 = 8 a_{3}=8 a3=8, … \ldots ,

由已知得 { a i } \{a_{i}\} {ai}为公比为2的等比数列,

∴ a i = 2 i ( i = 1 , 2 , 3 , … ) \therefore a_{i}=2^{i}(i=1,2,3,\ldots) ai=2i(i=1,2,3,),

$\because 在 n 次硬币的公平抛掷中,不出现比 在n次硬币的公平抛掷中,不出现比 n次硬币的公平抛掷中,不出现比Ign-2\lg\lg n 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于\dfrac{1}{n}$,

$\therefore 不出现比 不出现比 不出现比Ign-2\lg\lg n 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于\dfrac{1}{n}$.

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

华为盘古:

在硬币的公平抛掷中,正面特征序列的长度下界是 ( l g n ) (lgn) (lgn),其中 l g n lgn lgn 是硬币的质量, g g g 是硬币的直径。

因此,如果要使得特征序列长度的下界变得更精确,需要找到一种方法使得每次抛掷硬币的正面特征序列长度都比 ( l g n ) (lgn) (lgn) 小。

对于可能出现的情况,我们可以考虑以下几种:

1.使用更小的硬币质量:我们可以设计一种更小的硬币,使得其质量更小,从而使正面特征序列的长度更小。例如,如果使用 0.1 0.1 0.1 的硬币,正面特征序列的长度将变为 0.1 0.1 0.1$。

2.使用更小的硬币直径:我们可以设计一种更小的硬币直径,从而使正面特征序列的长度更小。例如,如果使用 0.02 0.02 0.02 的硬币,正面特征序列的长度将变为 0.02 0.02 0.02$。

3.调整硬币的重心:我们可以调整硬币的重心,从而使其在抛掷过程中更稳定,从而使正面特征序列的长度更小。例如,如果将硬币的重心设置在底部,正面特征序列的长度将变为 0.02 0.02 0.02$。

总之,以上方法中,只有使用更小的硬币质量或更小的硬币直径才有可能使得正面特征序列的长度更小。然而,由于硬币的质量或直径是固定的,因此这种方法不是一种绝对精确的方法。

综上所述,在硬币的公平抛掷中,不出现比 Ign - 2lglgn 更长的连续正面特征序列的概率小于 1/n。

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

360智脑:

首先,我们需要确定一个与连续正面特征序列有关的概率分布函数(PDF)。假设每次抛掷硬币时,正面朝上的概率是 p = 0.5。因此,我们可以将 PDF 表示为一个线性组合,即 f(x) = (1-p)^x * p,其中 x 表示连续正面特征序列的长度。这个 PDF 对于所有可能的连续正面特征序列长度都是等概率的。

接下来,我们考虑最坏情况下连续正面特征序列长度的期望。在最坏情况下,连续正面特征序列长度的期望等于 Ign - 2log(n),其中 Ign 表示前 n 个硬币的正反面次数之和。由于正反面次数之和服从伯努利分布,因此我们可以使用二项式定理来计算期望。具体来说,对于任何大于或等于 1 的自然数 k,我们有 E[X_k] = np^k * (1-p)^{n-k},其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。将上述公式代入到最坏情况下连续正面特征序列长度的期望公式中,得到 Ign - 2log(n) = np^Ign * (1-p)^{n-Ign} + O(np^2 * (1-p)^n)。注意到 np^Ign * (1-p)^{n-Ign} 是一个关于 n 的多项式,并且它的最高次幂次方是 2log(n)。因此,在最坏情况下连续正面特征序列长度的期望可以近似为 Ign - 2log(n) = 2*log(n) * (1-p)^n + O(np^2 * (1-p)^n)。

现在,我们来考虑连续正面特征序列长度超过 Ign - 2log(n) 的概率。根据二项式定理,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质来计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。

最后,我们要证明连续正面特征序列长度超过 Ign - 2log(n) 的概率小于 1/n。为了做到这一点,我们可以利用中心极限定理来将连续正面特征序列长度超过 Ign - 2log(n) 的概率转化为样本独立性的概率。具体来说,我们可以使用中心极限定理来证明如下不等式成立:

P(X_k > Ign - 2*log(n)) < 1/n

其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

chatglm:

为了使特征序列长度的下界变得更精确,我们可以使用最大长度序列的稳定性理论。在 n 次硬币的公平抛掷中,假设出现连续正面特征序列的长度为 k,则该序列的长度不可能超过 n-k+1。因此,我们可以定义一个下界序列,即不存在比下界序列更长的连续正面特征序列。下界序列的长度为 n-k+1,其中 k 为当前已知的最长连续正面特征序列长度。

根据最大长度序列的稳定性理论,下界序列的稳定性可以通过以下方式计算:

  • 如果下界序列的长度为 n-k+1,则在接下来的硬币抛掷中,不出现比下界序列更长的连续正面特征序列的概率为 1/n。

  • 如果下界序列的长度为 n-k+1,且在接下来的硬币抛掷中出现了比下界序列更长的连续正面特征序列,则下界序列的长度将更新为新的最长连续正面特征序列长度。

因此,为了使特征序列长度的下界变得更精确,我们可以不断更新下界序列的长度,并使用最大长度序列的稳定性理论来计算不出现比下界序列更长的连续正面特征序列的概率。这样,我们可以得到一个更加精确的下界,并且可以保证不出现比下界更长的连续正面特征序列的概率小于 1/n。

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

chatgpt:

在 n 次硬币的公平抛掷中,每次抛掷硬币的结果可以是正面(H,head)或反面(T,tail),概率相等。

考虑不出现长度超过 Ign - 2⌊lg(n)⌋ 的连续正面特征序列,其中 Ign 表示自底向上取整(lg(n)) 个最低有效位的整数。我们可以使用归纳法证明概率小于 1/n。

  • 对于 n=1,即只有一次抛掷的情况,不会出现连续正面特征序列,概率为 1,大于 1/n (1/1=1)。

  • 假设对于 k 次抛掷,不会出现长度超过 Ign - 2⌊lg(k)⌋ 的连续正面特征序列的概率小于 1/k。

  • 考虑 k+1 次抛掷。避免出现长度超过 Ign - 2⌊lg(k+1)⌋ 的连续正面特征序列的情况,要么是最后一次抛掷结果为反面,要么是最后一次抛掷结果为正面,但之前连续正面特征序列长度不超过 Ign - 2⌊lg(k)⌋。根据归纳假设,前一种情况概率为 1/2,后一种情况概率小于 1/k。

所以,在 k+1 次抛掷中,不会出现长度超过 Ign - 2⌊lg(k+1)⌋ 的连续正面特征序列的概率等于 (1/2) + (1/k) 小于等于 1/(k+1)。

根据归纳法原理,对于任意的正整数 n,不会出现长度超过 Ign - 2⌊lg(n)⌋ 的连续正面特征序列的概率小于 1/n。

需要注意的是,这个概率上界是一个相对较弱的上界,因为它仅是基于归纳假设得出的。在实际应用中,可能需要更强的上界或更精确的概率计算方法来确定特征序列长度的下界。

文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题文章来源地址https://www.toymoban.com/news/detail-494935.html

到了这里,关于文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

    假设我们有一个伪随机数生成器,可以生成在[0,1)范围内的随机数。那么我们可以使用以下算法实现从一个[a, b]范围内的随机数: 1.首先生成一个随机数r,在[0,1)范围内。 2.检查r是否大于a。如果是,则重复步骤1,直到r小于等于a。 3.计算x = (b-a) * r + a。x就是在[a, b]范围内的随

    2024年02月07日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

    可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到: p(N0, N1|p) = p(N0, N1, p) / p(p) 其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次

    2024年02月07日
    浏览(40)
  • 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题

    首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n),我们需要证明在最坏的情况下,该算法的运行时间是O(nlg n)。然后,我们需要证明在最坏的情况下,算法的期望运行时间是Ω(nlg n)。 RANDOMIZED-QUICKSORT算法是基于快速排序的一种随机化版本,其中在每次递归分割时,随机

    2024年02月12日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题

    文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题 要证明在最坏情况下,HEAPSORT 的时间复杂度是 Ω(n log n),我们需要考虑在何种情况下堆排序的时间复杂度最低。 在堆排序中,构建最大堆的时间复杂度为 O(n),这是因为在最坏情况下,堆中每个元素都需要与其他元素进行

    2024年02月16日
    浏览(30)
  • 文心一言 VS 讯飞星火 VS chatgpt (33)-- 算法导论5.2 5题

    假设A的元素构成(1, 2, …, n)上的一个均匀随机排列,我们可以使用指示器随机变量来计算其中逆序对的数目期望。 首先,我们定义一个指示器随机变量X(i, j),表示A[i]和A[j]是否构成一个逆序对。如果A[i] A[j],则X(i, j) = 1,否则X(i, j) = 0。 根据题目描述,A的元素构成(1, 2, …,

    2024年02月09日
    浏览(55)
  • 文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题

    在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两

    2024年02月08日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

    为了计算掷n个骰子之和的期望值,我们需要先了解一个重要的概念:指示器随机变量。 指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示

    2024年02月09日
    浏览(42)
  • 文心一言 VS 讯飞星火 VS chatgpt (63)-- 算法导论6.5 2题

    文心一言 VS 讯飞星火 VS chatgpt (63)-- 算法导论6.5 2题 MAX-HEAP-INSERT(A, 10) 是将元素 10 插入到堆 A 中并保持堆性质的函数。下面是在堆 A=(15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1) 上执行 MAX-HEAP-INSERT(A, 10) 的操作过程: 1.将元素 10 插入到堆的末尾,即将 10 添加到堆的最后一个位置。 2.对插

    2024年02月16日
    浏览(35)
  • 文心一言 VS 讯飞星火 VS chatgpt (58)-- 算法导论6.4 2题

    文心一言 VS 讯飞星火 VS chatgpt (58)-- 算法导论6.4 2题 在 HEAPSORT 算法中使用以下循环不变量是正确的: 1.在算法的第 2~5 行 for 循环每次迭代开始时,子数组 A[1…i] 是一个包含了数组 A[1…n] 中第 i 小元素的最大堆。 2.子数组 A[i+1…n] 包含了数组 A[1…n] 中已排序的 n-i 个最大元

    2024年02月16日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (54)-- 算法导论6.2 6题

    文心一言 VS 讯飞星火 VS chatgpt (53)-- 算法导论6.2 5题 要证明 MAX-HEAPIFY 的最坏情况运行时间为 Ω(Ig(n)),我们需要在大小为 n 的堆上构造一个特定的情况,使得每个节点都需要进行 MAX-HEAPIFY 操作,并且每个操作的运行时间都是 O(log n)。 我们可以将堆的根节点设置为一个较大的

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包