计算机网络核心

这篇具有很好参考价值的文章主要介绍了计算机网络核心。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

序号 地址
1 计算机网络核心
2 数据库相关
3 Redis
4 Linux相关
5 JVM的内容
6 GC相关的
7 Java多线程与并发
8 Java多线程与并发-原理
9 Java常用类库与技巧
10 Java框架-Spring


1、OSI开放式互联参考模型

  • 1、物理层:机械、电子、定时接口通信信道上的原始比特流传输。
  • 2、数据链路层:物理寻址,同时将原始比特流转变为逻辑传输线路。
  • 3、网络层:控制子网的运行,如逻辑编址、分组传输、路由选择(IP协议)。
  • 4、传输层:接受上一层的数据,在必要的时候把数据进行分割,并将这些数据交给网络层,且保证这些数据段有效到达对端(TCP/UDP)。
  • 5、会话层:不同机器上的用户之间建立及管理会话。
  • 6、表示层:信息的语法语义以及它们的关联,如加密解密、转换翻译、压缩解压缩。
  • 7、应用层:(HTTP)

计算机网络核心

计算机网络核心

2、TCP/IP

计算机网络核心

3、TCP报文头

传输控制协议TCP简介

  • 面向连接的、可靠的、基于字节流的传输层通信协议。
  • 将应用层的数据流分割成报文段并发送给目标节点的TCP层。
  • 数据包都有序号,对方收到则发送ACK确认,未收到则重传。
  • 使用校验和来检验数据在传输过程中是否有误。

套接字(socket)

每个需要发送的数据使用seq进行编号。返回的数据采用ACK来标记的。

计算机网络核心

TCP报文头:

  • Source Port:源端口

  • Destination Port:目标端口

  • Sequence Number:序号,传输的数据的编号。

  • AckNowledgment Number:B期望收到A的下个数据序号。

  • Offset:数据便移:TCP报文距离起始报文的距离。

  • Reserved:保留域:目前为0;

  • TCP Flags:控制位,有8个标志位组成,每个包含单独的控制功能。

    • ACK:确认序号标志(1/0)
    • SYN:同步序号,用于建立连接过程
    • FIN:finish标志,用于释放连接
    • URG:紧急指针标志(1/0)
    • PSH:push标志(1/0)
    • RST:重置链接标志
  • Windows:流量控制:滑动窗口大小,告知缓存大小,控制发送数据的速率。(接收方用来通知发送方,自己含有多少缓冲区来接收数据。发送方根据接收方处理能力,来发送数据。不会让接收方处理不过来。)

  • Checksum:进行16位计算得到,用于报文头的校验。

  • Urgent Pointer:紧急指针,字节数紧急数据

  • TCP Options:可选项,定义其它一些可选参数。

4、TCP的三次握手

计算机网络核心

三次握手的流程图:

  1. 在TCP/P协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。
  2. 第一次握手:建立连接时,客户端发送SY包n=到服务器,并进入 SYN SEND状态等待服务器确认第二次握手:服务器收到SYN包,必须确认客户的SYN
  3. (ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包此时服务器进入 SYN RECV状态;第三次握手客户端收到服务器的SYN+ACK包向服务器发送确认包ACK[ack=k+1)此包发送完毕客户端和服务器进入ESTABLISHED状态完成三次握手。

计算机网络核心

三次握手的目的:

为了初始化Seq(Sequence Number的初始值)

首次握手的隐患—SYN超时

原因:

  • Server B收到 Client A的SYN,回复SYN-ACK的时候未收到ACK确认
  • Server B不断重试直至超时,Linux默认等待63秒才断开连接
  • 1/2/4/8/16总共31秒钟会请求5次,然后再等待30秒才会断开连接。

针对SYN Flood的防护措施

会有黑客不断的请求你的服务然后断开,占用你的连接对列,造成正常访问也不能使用。

  • SYN队列满后,通过 tcp_syncookies参数回发 SYN Cookie。
  • 若为正常连接则 Client会回发 SYN Cookie,直接建立连接。

建立连接后,Client出现故障怎么办?

保活机制:

  • 向对方发送保活探测报文,如果未收到响应则继续发送。
  • 尝试次数达到保活探测数仍未收到响应则中断连接。

5、TCP的四次挥手

"挥手"是为了终止连接,TCP四次挥手的流程图:

由任一方,发出Close进行触发。

  • 第一次挥手:Client发送一个FIN,用来关闭 Client到 Server的数据传送,Client进入 FIN_WAIT_1状态;
  • 第二次挥手:Server收到FIN后,发送一个ACK给 Client,确认序号为收到序号+1(与SYN相同,一个FN占用一个序号),Server进入 CLOSE_WAIT状态;
  • 第三次挥手:Server发送一个FIN,用来关闭 Server到 Client的数据传送,Server进入 LAST_ACK状态;
  • 第四次挥手:Client收到FN后,Client进入 TIME_WAIT状态,接着发送一个ACK给 Server,确认序号为收到序号+1,Server进入 CLOSED状态,完成四次挥手。

计算机网络核心

6、为什么会有TIME_WAIT状态(等待2MSL的时间)

  • 确保有足够的时间让对方收到ACK包
  • 假如对方没有收到,再进行重发,时间为2MSL的时间(2个请求时间)
  • 避免新旧连接混淆()

7、为什么需要四次握手才能断开连接

因为全双工,发送方和接收方都需要FIN报文和ACK报文

8、服务器出现大量 CLOSE_WA状态的原因?

对方关闭 socket连接,我方忙于读或写,没有及时关闭连接。

  • 检查代码,特别是释放资源的代码。
  • 检查配置,特别是处理请求的线程配置。

服务器会给每个用户提供一定量的连接数(几千),超过一定量会报错。

会报错:too many open files

9、UDP简介

计算机网络核心

  • Source Port:源端口。
  • Destination Port:目标端口。
  • Length:数据包长度。
  • Checksum:奇偶校验值。
  • Data octets:用户数据。

UDP的特点:

  • 面向非连接。
  • 不维护连接状态,支持同时向多个客户端传输相同的消息。
  • 数据包报头只有8个字节,额外开销较小。
  • 吞吐量只受限于数据生成速率、传输速率以及机器性能。
  • 尽最大努力交付,不保证可靠交付,不需要维持复杂的链接状态表。
  • 面向报文,不对应用程序提交的报文信息进行拆分或者合并。

结论:

TCP用来保证可靠性和有序性

  • TCP(面向连接) VS UDP(无连接)
  • 可靠性(TCP高)
  • 有序性(TCP利用序号)
  • 速度(TCP慢)
  • 量级(TCP重量级)

10、TCP的滑动窗口

TRR和RTO

  • TRR:发送一个数据包到收到对应的ACK,所花费的时间。
  • TRO:重传时间间隔。

TCP使用滑动窗口做流量控制与乱序重排

  • 保证TCP的可靠性
  • 保证TCP的流控特性

Windows窗口:接收方用来通知发送方,自己含有多少缓冲区来接收数据。发送方根据接收方处理能力,来发送数据。不会让接收方处理不过来。

计算机网络核心

接受方还能接受的数据量:=接收端缓存池大小-已占据的缓存大小

AdvertisedWindow=MaxRcvBuffer-(LastByteRcvd - LastByteRead)

可剩余发送数据大小:=接受方还能接受的数据量-已经准备好并未发送数据量

EffectiveWindow=AdvertisedWindow-(LastByteSent - LastByteAcked)

TCP的滑动窗口

计算机网络核心

计算机网络核心

11、HTTP简介

超文本传输协议HTTP主要特点

  • 支持客户/服务器模式
  • 简单快速(请求方法和路径)
  • 灵活(可以任意类型数据结构,使用content-type标注)
  • 无连接(使用后则断开连接)
  • 无状态(协议对于事务处理,没有记忆)

HTTP 1.1版本:增加了KEEP—alive

HTTP请求数据结构:

计算机网络核心

计算机网络核心

计算机网络核心

HTTP响应报文数据结构

计算机网络核心

计算机网络核心

计算机网络核心

请求/响应的步骤

  • 客户端连接到Web服务器
  • 发送HTTP请求
  • 服务器接收请求并返回HTTP响应
  • 释放连接TCP连接
  • 客户端浏览器解析HTML内容

在浏览器地址栏键入∪RL,按下回车之后经历的流程。

  • DNS解析(寻找url地址对应的IP地址)(浏览器缓存,系统缓存,路由器缓存,IPS服务器服务器缓存,根域名服务缓存,顶级域名缓存)
  • TCP连接(三次握手)
  • 发送HTTP请求
  • 服务器处理请求并返回HTTP报文
  • 浏览器解析渲染页面
  • 连接结束

HTTP状态码

5种取值

  • 1xx:指示信息-表示请求已接收,继续处理。
  • 2xx:成功-表示请求已被成功接收、理解、接受。
  • 3xx:重定向-要完成请求必须进行更进一步的操作。
  • 4xx:客户端错误-请求有语法错误或请求无法实现。
  • 5xx:服务器端错误-服务器未能实现合法的请求。

常见状态码:

  • 200 oK:正常返回信息
  • 400 Bad Request:客户端请求有语法错误,不能被服务器所理解。
  • 401 Unauthorized:请求未经授权,这个状态代码必须和WWW-Authenticate报头域一起使用。
  • 403 Forbidden:服务器收到请求,但是拒绝提供服务。
  • 404 Not Found:请求资源不存在,eg,输入了错误的URL。
  • 500 Internal Server Error:服务器发生不可预期的错误。
  • 503 Server Unavailable:服务器当前不能处理客户端的请求,过段时间后可能恢复正常。

GET请求和POST请求的区别

三个方面来解答

  • Http报文层面:GET将请求信息放在URL,POST放在报文体中。
  • 数据库层面:CET符合幂等性和安全性,POST不符合。
  • 其他层面:GET可以被缓存、被存储,而POST不行。

Cookie和Session

Cookie简介

  • 是由服务器发给客户端的特殊信息,以文本的形式存放在客户端。
  • 客户端再次请求的时候,会把 Cookie回发。
  • 服务器接收到后,会解析 Cookie生成与客户端相对应的内容。

Cookie的设置以及发送过程

计算机网络核心

Session简介

  • 服务器端的机制,在服务器上保存的信息。
  • 解析客户端请求并操作 session id,按需保存状态信息。

Session的是实现方式

  • 使用 Cookie来实现(每次请求Cookie带上JESSIONID)
  • 使用URL回写来实现(所有连接带上JSSONID,用户点击被带回)

Cookie和Session的区别

  • Cookie数据存放在客户的浏览器上。
  • Session数据放在服务器上Session相对于。
  • Cookie更安全若考虑减轻服务器负担,应当使用 Cookie

12、HTTP和HTTPS的区别

安全版HTTP,增加了一层。

计算机网络核心

SSL(Security Sockets Layer,安全套接层)

  • 为网络通信提供安全及数据完整性的一种安全协议。
  • 是操作系统对外的API,SSL3.0后更名为TLS。
  • 采用身份验证和数据加密保证网络通信的安全和数据的完整性。

加密的方式:

  • 对称加密:加密和解密都使用同一个密钥。(效率高)
  • 非对称加密:加密使用的密钥和解密使用的密钥是不相同的。(安全性高,效率低)
  • 哈希算法:将任意长度的信息转换为固定长度的值,算法不可逆。
  • 数字签名:证明某个消息或者文件是某人发出/认同的。

HTTPS数据传输流程

  1. 浏览器将支持的加密算法信息发送给服务器
  2. 服务器选择一套浏览器支持的加密算法,以证书的形式回发浏览器。
  3. 浏览器验证证书合法性,并结合证书公钥加密信息发送给服务器。
  4. 服务器使用私钥解密信息,验证哈希,加密响应消息回发浏览器。
  5. 浏览器解密响应消息,并对消息进行验真,之后进行加密交互数据。

HTTP和HTTPS的区别

  • HTTPS需要到CA申请证书,HTTP不需要。
  • HTTPS密文传输,HTTP明文传输。
  • 连接方式不同,HTTPS默认使用443端口,HTTP使用80端口
  • HTTPS=HTTP+加密+认证+完整性保护,较HTTP安全。

HTTPS真的很安全吗

  • 浏览器默认填充http://,请求需要进行跳转,有被劫持的风险。
  • 可以使用HSTS(HTTP Strict Transport Security)优化

13、Socket简介

Socket是对TCP/IP协议的抽象,是操作系统对外开放的接口

计算机网络核心

Socket通信流程

计算机网络核心文章来源地址https://www.toymoban.com/news/detail-495005.html

ServerSocket ss = new ServerSocket(6500);
Socket socket = ss.accept();

Socket socket = new Socket("127.0.0.1",65000);
OutputStream os = socket.getOutputStream();

到了这里,关于计算机网络核心的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机网络的89个核心概念

    主机 :计算机网络上任何一种能够 连接网络的设备 都被称为主机或者说 端系统 ,比如手机、平板电脑、电视、游戏机、汽车等,随着 5G 的到来,将会有越来越多的终端设备接入网络。 通信链路: 通信链路是由物理链路(同轴电缆、双绞线、光纤等)连接到一起组成的 一

    2024年02月11日
    浏览(49)
  • 计算机网络-NAT网络地址转换

    今天来回顾下之前所学的知识,将它们串联起来进行巩固。一开始了解了IP编址进行IP设置和划分网段;学习了二层以太网交换,了解了二层通信基础;学习了路由基础知识,大致了解到了路由是什么?静态路由和动态路由;然后学习了VLAN的知识,进行虚拟局域网的划分和V

    2024年01月17日
    浏览(42)
  • 计算机网络-IP地址

    目录 子网划分 定长子网划分 子网划分的方法 子网掩码 可变长子网划分 无类别编址 网络前缀 路由聚合 特殊用途的IP地址 专用网络地址 链路本地地址 运营商级NAT共享地址 用于文档的测试网络地址 IP地址的规划和分配 IP地址的规划和分配方法 IP地址的规划和分配实例 从IP地

    2024年02月08日
    浏览(47)
  • 计算机网络 MAC地址

         

    2024年02月13日
    浏览(45)
  • 计算机网络中的网络地址转换

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 在计算机网络的广阔和互联的环境中,有一位幕后英雄在设备如何跨数字领域进行通信方面发挥着关键作用。您可能在科技圈子里听说过它的首字母缩略词,或者在路由器的设置中遇到过它——NAT 或网

    2024年01月24日
    浏览(41)
  • 计算机网络——主机IP地址、子网掩码、广播地址、网络数、主机数计算方法

    目录 一、概念 1.1 主机IP地址 1.2 子网掩码 1.3 广播地址 1.4 子网划分 二、计算 2.1 已知IP地址和子网掩码,计算网络地址和主机地址: 2.2 已知IP地址和子网掩码,计算广播地址: 2.3 已知子网掩码,计算主机数: 2.4 已知子网掩码,计算会产生多少个子网: 2.5 已知子网掩码,

    2023年04月24日
    浏览(44)
  • 计算机网络 01 IP地址

    01.IPV4和IPV4的表示方式(点分四组) 二进制表达 02.IPV6(十六进制表达) 计算理解:一个十六进制的数转化成为二进制 是 4位 128/4=32 ,一共用32个十六进制 简化书写IPV6 02. 03.IPV4转换成为IPV6 04.IPV6的低32位 05.在URL中使用IPV6 1. 2. 3.

    2024年04月09日
    浏览(83)
  • 计算机网络-IP地址解析

    局域网 是指一个较小范围内的计算机网络,由多台计算机、服务器、打印机、网络存储设备和其他网络设备组成,通过局域网,这些设备可以方便地进行数据通信和互相访问共享资源。局域网使用一些标准的网络协议来连接和管理网络设备,如TCP/IP、以太网等。我们大家理解

    2024年02月01日
    浏览(57)
  • 计算机网络-IP地址计算专题(非常重要)

    软考中的地址计算题都只需要计算出某个IP地址所在的地址范围即可。 计算就是三步。【前提是在一个字节范围类计算】 小船过河,每条小船上只能容纳2^N个小朋友 假如让你设计网络 这里转载一个大佬的博客,写得灰常好,将网络通信中的网络设备的由来讲得很通透。

    2024年02月13日
    浏览(47)
  • 计算机网络相关-ip地址,子网掩码与网络地址,广播地址

    计算机网络基础(进制转换和IP地址详解)_ip地址进制转换方法_码海小虾米_的博客-CSDN博客 总的来说,ip地址用点隔开,用4个0-255之间的十进制数表示,如192.168.65.98 有这样的题:告诉你ip地址和子网掩码位数,求网络地址和广播地址。 一般给出的信息是这样的:192.168.65.98

    2024年02月07日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包