目录
一、数据预处理
1、加载数据
2. 构建词典
3.生成数据批次和迭代器
二、模型构建
1.搭建模型
2.初始化模型
3.定义训练与评估函数
三、训练模型
1. 拆分数据集并运行模型
2. 测试指定数据
🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
🍖 作者:[K同学啊]
一、数据预处理
1. 任务说明
本次将加入Word2vec使用PyTorch实现中文文本分类,Word2Vec 则是其中的一种词嵌入方法,是一种用于生成词向量的浅层神经网络模型,由Tomas Mikolov及其团队于2013年提出。Word2Vec通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系。更详细的内容可见训练营内的NLP基础知识,数据示例如下:
📌 本周任务:
●结合Word2Vec文本内容(第1列)预测文本标签(第2列)
●尝试根据第2周的内容独立实现,尽可能的不看本文的代码
●进一步了解并学习Word2Vec
一、数据预处理
1、加载数据
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") #忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
cuda
import pandas as pd
# 加载自定义中文数据
train_data = pd.read_csv('./train.csv', sep='\t', header=None)
print(train_data)
# 构造数据集迭代器
def coustom_data_iter(texts, labels):
for x, y in zip(texts, labels):
yield x, y
x = train_data[0].values[:]
#多类标签的one-hot展开
y = train_data[1].values[:]
2. 构建词典
调用gensim库
from gensim.models.word2vec import Word2Vec
import numpy as np
# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。
min_count=3) #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。
w2v.build_vocab(x)
w2v.train(x,
total_examples=w2v.corpus_count,
epochs=20)
Word2Vec可以直接训练模型,一步到位。这里分了三步
- 第一步构建一个空模型
- 第二步使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。
- 第三步使用 train 方法对模型进行训练,total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量
# 将文本转化为向量
def average_vec(text):
vec = np.zeros(100).reshape((1, 100))
for word in text:
try:
vec += w2v.wv[word].reshape((1, 100))
except KeyError:
continue
return vec
# 将词向量保存为 Ndarray
x_vec = np.concatenate([average_vec(z) for z in x])
# 保存 Word2Vec 模型及词向量
w2v.save('w2v_model.pkl')
这段代码定义了一个函数 average_vec(text),它接受一个包含多个词的列表 text 作为输入,并返回这些词对应词向量的平均值。该函数
- 首先初始化一个形状为 (1, 100) 的全零 numpy 数组来表示平均向量
- 然后遍历 text 中的每个词,并尝试从 Word2Vec 模型 w2v 中使用 wv 属性获取其对应的词向量。如果在模型中找到了该词,函数将其向量加到 vec 中。如果未找到该词,函数会继续迭代下一个词
- 最后,函数返回平均向量 vec
然后使用列表推导式将 average_vec() 函数应用于列表 x 中的每个元素。得到的平均向量列表使用 np.concatenate() 连接成一个 numpy 数组 x_vec,该数组表示 x 中所有元素的平均向量。x_vec 的形状为 (n, 100),其中 n 是 x 中元素的数量。
train_iter = coustom_data_iter(x_vec, y)
print(len(x),len(x_vec))
12100 12100
label_name = list(set(train_data[1].values[:]))
print(label_name)
['Radio-Listen', 'FilmTele-Play', 'Weather-Query', 'Music-Play', 'Audio-Play', 'Other', 'Travel-Query', 'Alarm-Update', 'HomeAppliance-Control', 'Calendar-Query', 'Video-Play', 'TVProgram-Play']
3.生成数据批次和迭代器
text_pipeline = lambda x: average_vec(x)
label_pipeline = lambda x: label_name.index(x)
print(text_pipeline("你在干嘛"))
print(label_pipeline("Travel-Query"))
8
from torch.utils.data import DataLoader
def collate_batch(batch):
label_list, text_list= [], []
for (_text, _label) in batch:
# 标签列表
label_list.append(label_pipeline(_label))
# 文本列表
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)
text_list.append(processed_text)
label_list = torch.tensor(label_list, dtype=torch.int64)
text_list = torch.cat(text_list)
return text_list.to(device),label_list.to(device)
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
batch_size=8,
shuffle =False,
collate_fn=collate_batch)
二、模型构建
1.搭建模型
from torch import nn
class TextClassificationModel(nn.Module):
def __init__(self, num_class):
super(TextClassificationModel, self).__init__()
self.fc = nn.Linear(100, num_class)
def forward(self, text):
return self.fc(text)
2.初始化模型
num_class = len(label_name)
vocab_size = 100000
em_size = 12
model = TextClassificationModel(num_class).to(device)
3.定义训练与评估函数
import time
def train(dataloader):
model.train() # 切换为训练模式
total_acc, train_loss, total_count = 0, 0, 0
log_interval = 50
start_time = time.time()
for idx, (text,label) in enumerate(dataloader):
predicted_label = model(text)
optimizer.zero_grad() # grad属性归零
loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
loss.backward() # 反向传播
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪
optimizer.step() # 每一步自动更新
# 记录acc与loss
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print('| epoch {:1d} | {:4d}/{:4d} batches '
'| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx,len(dataloader),
total_acc/total_count, train_loss/total_count))
total_acc, train_loss, total_count = 0, 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval() # 切换为测试模式
total_acc, train_loss, total_count = 0, 0, 0
with torch.no_grad():
for idx, (text,label) in enumerate(dataloader):
predicted_label = model(text)
loss = criterion(predicted_label, label) # 计算loss值
# 记录测试数据
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
return total_acc/total_count, train_loss/total_count
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)是一个PyTorch函数,用于在训练神经网络时限制梯度的大小。这种操作被称为梯度裁剪(gradient clipping),可以防止梯度爆炸问题,从而提高神经网络的稳定性和性能。
在这个函数中:
- model.parameters()表示模型的所有参数。对于一个神经网络,参数通常包括权重和偏置项。
- 0.1是一个指定的阈值,表示梯度的最大范数(L2范数)。如果计算出的梯度范数超过这个阈值,梯度会被缩放,使其范数等于阈值。
梯度裁剪的主要目的是防止梯度爆炸。梯度爆炸通常发生在训练深度神经网络时,尤其是在处理长序列数据的循环神经网络(RNN)中。当梯度爆炸时,参数更新可能会变得非常大,导致模型无法收敛或出现数值不稳定。通过限制梯度的大小,梯度裁剪有助于解决这些问题,使模型训练变得更加稳定。
三、训练模型
1. 拆分数据集并运行模型
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS = 10 # epoch
LR = 5 # 学习率
BATCH_SIZE = 64 # batch size for training
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
# 构建数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
split_train_, split_valid_ = random_split(train_dataset,
[int(len(train_dataset)*0.8),int(len(train_dataset)*0.2)])
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
for epoch in range(1, EPOCHS + 1):
epoch_start_time = time.time()
train(train_dataloader)
val_acc, val_loss = evaluate(valid_dataloader)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
if total_accu is not None and total_accu > val_acc:
scheduler.step()
else:
total_accu = val_acc
print('-' * 69)
print('| epoch {:1d} | time: {:4.2f}s | '
'valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,
time.time() - epoch_start_time,
val_acc,val_loss,lr))
print('-' * 69)
test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
模型准确率为:0.8814文章来源:https://www.toymoban.com/news/detail-495049.html
2. 测试指定数据
def predict(text, text_pipeline):
with torch.no_grad():
text = torch.tensor(text_pipeline(text), dtype=torch.float32)
print(text.shape)
output = model(text)
return output.argmax(1).item()
# ex_text_str = "随便播放一首专辑阁楼里的佛里的歌"
ex_text_str = "还有双鸭山到淮阴的汽车票吗13号的"
model = model.to("cpu")
print("该文本的类别是:%s" %label_name[predict(ex_text_str, text_pipeline)])
文章来源地址https://www.toymoban.com/news/detail-495049.html
到了这里,关于NLP实战:使用Word2vec实现文本分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!