上接乘法器介绍
原理
跟基2的算法一样,假设A和B是乘数和被乘数,且有:
A = ( a 2 n + 1 a 2 n ) a 2 n − 1 a 2 n − 2 … a 1 a 0 ( a − 1 ) B = b 2 n − 1 b 2 n − 2 … b 1 b 0 \begin{align}A=&(a_{2n+1}a_{2n})a_{2n−1}a_{2n−2}…a_1a_0(a_{−1})\\ B=&b_{2n−1}b_{2n−2}…b_1b_0\end{align} A=B=(a2n+1a2n)a2n−1a2n−2…a1a0(a−1)b2n−1b2n−2…b1b0
其中, a − 1 a_{−1} a−1是末尾补的0, a 2 n , a 2 n + 1 a_{2n},a_{2n+1} a2n,a2n+1是扩展的两位符号位。可以将乘数A表示为:
A = ( − 1 ⋅ a 2 n − 1 ) 2 2 n − 1 + a 2 n − 2 ⋅ 2 2 n − 2 + ⋯ + a 1 ⋅ 2 + a 0 A=(−1⋅a_{2n−1})2^{2n−1}+a_{2n−2}⋅2^{2n−2}+⋯+a_1⋅2+a_0 A=(−1⋅a2n−1)22n−1+a2n−2⋅22n−2+⋯+a1⋅2+a0
同样可以将两数的积表示为:
A B = ( a − 1 + a 0 − 2 a 1 ) × B × 2 0 + ( a 1 + a 2 − 2 a 3 ) × B × 2 2 + ( a 3 + a 4 − 2 a 5 ) × B × 2 4 + … + ( a 2 n − 1 + a 2 n − 2 a 2 n + 1 ) × B × 2 2 n = B × [ ∑ k = 0 n ( a 2 k − 1 + a 2 k − 2 a 2 k + 1 ) ⋅ 2 2 k ] = B × V a l ( A ) \begin{align}AB&=(a_{−1}+a_0−2a_1)×B×2^0+(a_1+a_2−2a_3)×B×2^2\\ &+(a_3+a_4−2a_5)×B×2^4+…\\ &+(a_{2n−1}+a_{2n}−2a_{2n+1})×B×2^{2n}\\ &\red{=B×[∑_{k=0}^n(a_{2k−1}+a_{2k}−2a_{2k+1})⋅2^{2k}]}\\ &=B×Val(A)\end{align} AB=(a−1+a0−2a1)×B×20+(a1+a2−2a3)×B×22+(a3+a4−2a5)×B×24+…+(a2n−1+a2n−2a2n+1)×B×22n=B×[k=0∑n(a2k−1+a2k−2a2k+1)⋅22k]=B×Val(A)
红色部分即为基4booth的编码方式。
算法实现
乘数位 ( a 2 k − 1 + a 2 k − 2 a 2 k + 1 ) (a_{2k−1}+a_{2k}−2a_{2k+1}) (a2k−1+a2k−2a2k+1) | 编码操作 |
---|---|
000 | 0 |
001 | +B |
010 | +B |
011 | +2B |
100 | -2B |
101 | -B |
110 | -B |
111 | 0 |
所有操作过后都会移位两次。 |
Verilog 代码
`timescale 1ns / 1ps
module booth4_mul #(
parameter WIDTH_M = 8,
parameter WIDTH_R = 8
) (
input clk,
input rstn,
input vld_in,
input [ WIDTH_M-1:0] multiplicand,
input [ WIDTH_R-1:0] multiplier,
output [WIDTH_M+WIDTH_R-1:0] mul_out,
output reg done
);
parameter IDLE = 2'b00, ADD = 2'b01, SHIFT = 2'b11, OUTPUT = 2'b10;
reg [1:0] current_state, next_state;
reg [WIDTH_M+WIDTH_R+2:0] add1;
reg [WIDTH_M+WIDTH_R+2:0] sub1;
reg [WIDTH_M+WIDTH_R+2:0] add_x2;
reg [WIDTH_M+WIDTH_R+2:0] sub_x2;
reg [WIDTH_M+WIDTH_R+2:0] p_dct;
reg [ WIDTH_R-1:0] count;
always @(posedge clk or negedge rstn)
if (!rstn) current_state = IDLE;
else if (!vld_in) current_state = IDLE;
else current_state <= next_state;
always @* begin
next_state = 2'bx;
case (current_state)
IDLE: if (vld_in) next_state = ADD;
else next_state = IDLE;
ADD: next_state = SHIFT;
SHIFT: if (count == WIDTH_R / 2) next_state = OUTPUT;
else next_state = ADD;
OUTPUT: next_state = IDLE;
default: next_state = IDLE;
endcase
end
always @(posedge clk or negedge rstn) begin
if (!rstn) begin
{add1, sub1, add_x2, sub_x2, p_dct, count, done} <= 0;
end else begin
case (current_state)
IDLE: begin
add1 <= {{2{multiplicand[WIDTH_R-1]}}, multiplicand, {WIDTH_R + 1{1'b0}}};
sub1 <= {-{{2{multiplicand[WIDTH_R-1]}}, multiplicand}, {WIDTH_R + 1{1'b0}}};
add_x2 <= {{multiplicand[WIDTH_M-1], multiplicand, 1'b0}, {WIDTH_R + 1{1'b0}}};
sub_x2 <= {-{multiplicand[WIDTH_M-1], multiplicand, 1'b0}, {WIDTH_R + 1{1'b0}}};
p_dct <= {{WIDTH_M + 1{1'b0}}, multiplier, 1'b0};
count <= 0;
done <= 0;
end
ADD: begin
case (p_dct[2:0])
3'b000, 3'b111: p_dct <= p_dct;
3'b001, 3'b010: p_dct <= p_dct + add1;
3'b101, 3'b110: p_dct <= p_dct + sub1;
3'b100: p_dct <= p_dct + sub_x2;
3'b011: p_dct <= p_dct + add_x2;
default: p_dct <= p_dct;
endcase
count <= count + 1;
end
SHIFT: p_dct <= {p_dct[WIDTH_M+WIDTH_R+2], p_dct[WIDTH_M+WIDTH_R+2], p_dct[WIDTH_M+WIDTH_R+2:2]};
OUTPUT: begin
done <= 1;
end
endcase
end
end
assign mul_out = p_dct[WIDTH_M+WIDTH_R:1];
endmodule
testbench:文章来源:https://www.toymoban.com/news/detail-495318.html
`timescale 1ns / 1ps
module booth4_mul_tb ();
`define TEST_WIDTH 8
parameter WIDTH_M = `TEST_WIDTH;
parameter WIDTH_R = `TEST_WIDTH;
reg clk;
reg rstn;
reg vld_in;
reg [ WIDTH_M-1:0] multiplicand;
reg [ WIDTH_R-1:0] multiplier;
wire [WIDTH_M+WIDTH_R-1:0] mul_out;
wire done;
//输入 :要定义有符号和符号,输出:无要求
wire signed [ `TEST_WIDTH-1:0] m1_in;
wire signed [ `TEST_WIDTH-1:0] m2_in;
reg signed [ 2*`TEST_WIDTH-1:0] product_ref;
reg [ 2*`TEST_WIDTH-1:0] product_ref_u;
assign m1_in = multiplier[`TEST_WIDTH-1:0];
assign m2_in = multiplicand[`TEST_WIDTH-1:0];
always #1 clk = ~clk;
integer i, j;
integer num_good;
initial begin
clk = 0;
vld_in = 0;
multiplicand = 0;
multiplier = 0;
num_good = 0;
rstn = 1;
#4 rstn = 0;
#2 rstn = 1;
repeat (2) @(posedge clk);
for (i = 0; i < (1 << `TEST_WIDTH); i = i + 1) begin
for (j = 0; j < (1 << `TEST_WIDTH); j = j + 1) begin
vld_in = 1;
wait (done == 0);
wait (done == 1);
product_ref = m1_in * m2_in;
product_ref_u = m1_in * m2_in;
if (product_ref != mul_out) begin
$display("multiplier = %d multiplicand = %d proudct =%d", m1_in, m2_in, mul_out);
@(posedge clk);
$stop;
end else begin
num_good = num_good + 1;
end
multiplicand = multiplicand + 1;
end
multiplier = multiplier + 1;
end
$display("sim done. num good = %d", num_good);
$finish;
end
booth4_mul #(
.WIDTH_M(WIDTH_M),
.WIDTH_R(WIDTH_R)
) U_BOOTH_RADIX4_0 (
.clk (clk),
.rstn (rstn),
.vld_in (vld_in),
.multiplicand(multiplicand),
.multiplier (multiplier),
.mul_out (mul_out),
.done (done)
);
initial begin
$fsdbDumpfile("tb.fsdb");
$fsdbDumpvars;
$fsdbDumpMDA();
$dumpvars();
end
endmodule
仿真波形图:
文章来源地址https://www.toymoban.com/news/detail-495318.html
到了这里,关于Verilog | 基4 booth乘法器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!