SUNet: Swin Transformer UNet for ImageDenoising

这篇具有很好参考价值的文章主要介绍了SUNet: Swin Transformer UNet for ImageDenoising。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Abstract

图像恢复是一个具有挑战性的不适定问题,也是一个长期存在的问题。在过去的几年中,卷积神经网络(cnn)几乎主导了计算机视觉,并在不同层次的视觉任务中取得了相当大的成功,包括图像恢复。然而,最近基于Swin transformer的模型也表现出了令人印象深刻的性能,甚至超过了基于cnn的方法,成为高级视觉任务的最先进的技术。在本文中,我们提出了一个名为SUNet的恢复模型,它使用Swin Transformer层作为我们的基本块,然后应用到UNet体系结构中进行图像去噪。源代码和经过训练的模型可以在https://github.com/FanChiMao/SUNet上找到。

I. INTRODUCTION

图像恢复是一种重要的底层图像处理方法,可以提高目标检测、图像分割和图像分类等高级视觉任务的性能。在一般的恢复任务中,损坏的图像Y可以表示为:

SUNet: Swin Transformer UNet for ImageDenoising

 其中X为干净图像,D(.)为退化函数,n为加性噪声。一些常见的恢复任务是去噪、去模糊和块化。

传统的图像恢复方法通常是基于算法的,称为基于先验或基于模型的方法,如BM3D[1]、WNNM[2]进行去噪;反卷积[3],图像优先于[4]去模糊。虽然大多数基于卷积神经网络(CNN)的方法已经取得了很好的性能[5]-[10],但朴素卷积层存在一些问题。首先,卷积核与图像是内容无关的。使用相同的卷积核来恢复不同的图像区域可能不是最好的解决方案[11],[12]。其次,因为卷积内核可以被看作是一个小的patch,其中获取的特征是局部信息,也就是说,在我们进行远程依赖建模时,会丢失全局信息。虽然在一些论文中提出了自适应卷积[13]、[14]、非局部卷积[15]、全局平均池化[16]等方法来克服这些缺陷,但直到Swin Transformer的出现才有效地解决了这些问题。

最近,[11]提出了一种新的基于transformer的骨干网——Swin transformer,并在图像分类方面取得了令人印象深刻的性能。此外,在越来越多的计算机视觉任务中,包括图像分割[11]、[17]-[19]、物体检测[11]、嵌绘[20]、超分辨率[12]、[21],使用Swin Transformer作为骨干已经超越了基于cnn的方法,达到了最先进的水平。在本文中,我们也将Swin Transformer作为我们的主要骨干,并将其集成到名为SUNet的UNet架构中,用于图像去噪。

总体而言,本文的主要贡献可归纳如下:

  • 我们提出了一种基于图像分割Swin-UNet模型的Swin Transformer网络,用于图像去噪。
  • 我们提出了一种双上采样块架构,其包括子像素和双线性上采样方法以防止棋盘伪影。实验结果表明,该方法优于原来的转置卷积上采样方法。
  • 据我们所知,我们的模型是第一个将Swin Transformer和UNet纳入去噪的模型。
  • 我们在两个常见的图像去噪数据集中展示了我们的SUNet的竞争结果。

II. RELATED WORK

随着硬件的快速发展(例如基于学习的方法在执行速度和性能上都击败了传统的基于模型的方法。在本节中,我们首先将介绍以前关于去噪的工作。然后,我们将描述UNet和Swin Transformer的相关工作。

A. Image Restoration

如前所述,传统的图像恢复方法是基于图像先验或通常称为基于模型的方法的算法,例如自相似性[1],[22],备用编码[23],[24]和全变差[25]。这些方法在解决不适定问题上的性能是可以接受的,但也存在一些缺点,如耗时、计算量大、难以恢复复杂的图像纹理等。与传统的复原方法相比,基于学习的方法,特别是卷积神经网络(CNN),由于其令人印象深刻的性能,已经成为包括图像复原在内的计算机视觉领域的主流。

B. UNet

目前,UNet [5]是许多图像处理应用中众所周知的架构,因为它具有分层特征映射以获得丰富的多尺度上下文特征。此外,它使用编码器和解码器之间的跳跃连接来增强图像的重建过程。UNet广泛用于许多计算机视觉任务,如分割,恢复[9],[26]。此外,它还有各种改进版本,如Res-UNet [27],Dense-UNet [28],Attention UNet [29]和Non-local UNet [30]。由于强大的自适应骨干,UNet可以很容易地应用于不同的提取块,以提高性能。

C. Swin Transformer

Transformer[31]模型在自然语言处理(NLP)领域取得了成功,在图像分类[32]、[33]方面也具有与cnn相当的性能。然而,直接将转换器用于视觉任务的两个主要问题是:1)图像与序列的尺度差异较大。由于需要一维序列参数的平方倍左右,transform存在长序列建模的缺陷。2) Transformer不擅长解决实例分割等密集的预测任务,这是一个像素级任务[34]。而Swin Transformer[11]通过移动窗口来降低参数,解决了上述问题,并在大量像素级视觉任务中取得了目前最先进的性能。

III. PROPOSED METHOD

A. SUNet

本文提出的Swin Transformer UNet (SUNet)的架构基于图像分割模型[19],如图1所示。SUNet由三个模块组成:1)浅层特征提取;2) UNet特征提取;3)重建模块。

SUNet: Swin Transformer UNet for ImageDenoising

 SUNet: Swin Transformer UNet for ImageDenoising

 SUNet: Swin Transformer UNet for ImageDenoising

 SUNet: Swin Transformer UNet for ImageDenoising

 B. Swin Transformer Block

在UNet提取模块中,我们使用STB代替传统的卷积层,如图2所示。STL[11]是基于NLP原始的Transformer层[31]。STL的个数总是2的倍数,其中一个是窗口型多头自我注意(W-MSA),另一个是移窗型多头自我注意(SWMSA)。正如在第II-C节中提到的,在CV任务中直接使用Transformer存在一些问题。因此,他们提出循环移位技术,以减少计算时间,并保持卷积的特性,包括接收场与层之间关系的平移不变性、旋转不变性和大小不变性。由于页面的限制,我们在本文中没有解释SW-MSA的原理以及它可以减少多少计算复杂度。但我们想强调Swin Transformer的一个关键属性(即,我们可以像卷积运算一样控制输出特性的分辨率(H,W)和通道数(C))。以图2(b)为例,整个过程表示为:

SUNet: Swin Transformer UNet for ImageDenoising

 其中LN(.)表示层归一化,MLP为多层感知器,具有两个全连通层,具有高斯误差线性单元(GELU)激活函数。

C. Resizing module

由于UNet具有不同尺度的特征图,因此需要调整大小模块(如下采样和上采样)。在我们的SUNet中,我们使用patch merge和提出的双上样本分别作为下采样和上采样模块。

Patch merging.

对于下采样模块,我们按照[11],[19]将每组2 × 2相邻patch的输入特征串接起来,然后利用线性层得到指定的输出特征通道数。我们也可以把这看作是做卷积运算的第一步,也就是展开输入的特征图。

Dual up-sample.

对于上采样,原来的Swin-UNet[19]采用的是patch展开方法,相当于上采样模块的转置卷积。然而,转置卷积很容易面对块效应。在这里,我们提出了一个名为dual up-sample的新模块,它由两个现有的上样方法(即Bilinear和PixelShuffle[35])组成,以防止棋盘伪像。所提出的上采样模块的结构如图3所示。

SUNet: Swin Transformer UNet for ImageDenoising

 IV. EXPERIMENTS

我们将我们的SUNet与基于先验的方法(如CBM3D[38])、基于cnn的方法(如DnCNN[6]、IrCNN[10]、FFDNet[7])和基于UNet的方法(如UNet[5]、DHDN[8]、RDUNet[9])进行了比较。图4为图像去噪后[39]、[40]结果的视觉比较。在表1中,我们对去噪后的图像进行了客观的质量评价[41]-[43],观察到以下三点:1)我们的SUNet具有有竞争力的SSIM值,因为Swin-Transformer是基于全局信息的,这使得去噪后的图像在感知上更加可信。2)与基于unet的方法(DHDN、RDUNet)相比,所提出的SUNet在三种模型中参数(↓60%)、FLOPs(↓3%)均较低,在PSNR和SSIM上均保持较高的分数。3)与基于cnn的方法(DnCNN、IrCNN、FFDNet)相比,我们的PSNR和SSIM结果最好,FLOPs几乎相同。虽然我们的模型的参数最大(99M),但这是由于自注意操作不能共享核的权值造成的。然而,更合理的是,不同层中的特性应该使用不同的内核值,正如我们在第1节中讨论的那样。

V. CONCLUSION

本文提出了基于Swin Transformer新骨干的SUNet架构,并在去噪方面取得了较好的效果。此外,我们提出了双上样例模块,以避免棋盘效应。现在说Swin Transformer可以取代卷积还为时过早。然而,Swin Transformer的潜力在未来仍然值得期待。我们未来的工作将尝试更复杂的恢复任务,如真实世界的噪音和真实世界的模糊,而模型仍然基于Swin-Transformer层。文章来源地址https://www.toymoban.com/news/detail-495876.html

到了这里,关于SUNet: Swin Transformer UNet for ImageDenoising的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Swin-Unet模型代码详解及改进思路

    Swim-unet是针对水下图像分割任务提出的一种模型结构,其基于U-Net模型并加入了Swin Transformer模块,可以有效地解决水下图像分割中的光照不均匀、噪声干扰等问题。 Swim-unet模型代码详解 首先,在导入必要的库后,我们需要定义Swin Transformer模块中的一些函数和类: import torc

    2024年02月09日
    浏览(39)
  • Swin-transformer论文阅读笔记(Swin Transformer: Hierarchical Vision Transformer using Shifted Windows)

    论文标题:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 论文作者:Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 论文来源:ICCV 2021,Paper 代码来源:Code 目录 1. 背景介绍 2. 研究现状 CNN及其变体 基于自注意的骨干架构 自注意/Transformer来补充CN

    2024年02月07日
    浏览(51)
  • transformer概述和swin-transformer详解

    目录 1.transformer架构 1.1输入部分实现 1.2编码器部分实现 1.2.1掩码张量 1.2.2注意力机制 1.2.3多头注意力机制 1.2.4前馈全连接层 1.2.5规范化层 1.2.6子层连接层 1.2.7编码器层 1.2.8编码器 1.3解码器部分实现 1.3.1解码器层 1.3.2解码器 1.4输出部分实现 2.swin-transformer transformer的整体网络架

    2024年02月03日
    浏览(35)
  • Swin Transformer详解

    原创:余晓龙 “Swin Transformer: Hierarchical Vision Transformer using Shifted Window”是微软亚洲研究院(MSRA)发表在arXiv上的论文,文中提出了一种新型的Transformer架构,也就是Swin Transformer。本文旨在对Swin Transformer架构进行详细解析。 整体的网络架构采取层次化的设计,共包含4个stag

    2024年02月06日
    浏览(37)
  • Swin-Transformer 详解

    由于Transformer的大火,相对应的也出来了许多文章,但是这些文章的速度和精度相较于CNN还是差点意思,2021年微软研究院发表在ICCV上的一篇文章Swin Transformer是Transformer模型在视觉领域的又一次碰撞,Swin Transformer可能是CNN的完美替代方案。 论文名称:Swin Transformer: Hierarchical

    2024年02月04日
    浏览(38)
  • Swin-transformer详解

    这篇论文提出了一个新的 Vision Transformer 叫做 Swin Transformer,它可以被用来作为一个计算机视觉领域一个通用的骨干网络.但是直接把Transformer从 NLP 用到 Vision 是有一些挑战的,这个挑战主要来自于两个方面 一个就是尺度上的问题。因为比如说现在有一张街景的图片,里面有很

    2024年02月05日
    浏览(41)
  • VIT与swin transformer

    VIT也就是vision transformer的缩写。是第一种将transformer运用到计算机视觉的网络架构。其将注意力机制也第一次运用到了图片识别上面。其结构图如下(采用的是paddle公开视频的截图) 看起来比较复杂,但实际上总体流程还是比较简单的。只需要看最右边的总的结构图,它的输

    2024年02月05日
    浏览(41)
  • 关于Swin Transformer的架构记录

    Swin Transformer 可以说是批着Transformer外表的卷积神经网络。 具体的架构如下图所示: 首先我们得到一张224*224*3的图片。 通过分成4*4的patch,变成了56*56*48。 线性变换后又变成了56*56*96。 然后利用了Swin Transformer中一个比较特别的结构 Patch Merging 变成28*28*192。 同理,变成14*14*3

    2024年02月20日
    浏览(35)
  • YOLOv5+Swin Transformer

    参考:(7条消息) 改进YOLOv5系列:3.YOLOv5结合Swin Transformer结构,ICCV 2021最佳论文 使用 Shifted Windows 的分层视觉转换器_芒果汁没有芒果的博客-CSDN博客 本科生工科生cv改代码 本来做的7,但是7报错一直解决不了,我就试试5 1、先是第一个报错 解决:在yolo.py里 2、 解决:common里删

    2024年02月12日
    浏览(34)
  • Swin-Transformer(原理 + 代码)详解

    图解Swin Transformer Swin-Transformer网络结构详解 【机器学习】详解 Swin Transformer (SwinT) 论文下载 官方源码下载 学习的话,请下载 Image Classification 的代码,配置相对简单,其他的配置会很麻烦。如下图所示: Install : pytorch安装:感觉pytorch 1.4版本都没问题的。 2、pip install timm==

    2023年04月08日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包