鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】

这篇具有很好参考价值的文章主要介绍了鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、介绍

鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

数据集选自加州理工学院200种鸟类数据集

二、效果展示

鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】

鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】

鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】

三、演示视频+代码

视频+完整代码:https://www.yuque.com/ziwu/yygu3z/txsu6elpcf0o5az1

四、TensorFlow使用

TensorFlow是由Google开发的一个开源机器学习框架。它的设计目标是让开发者能够更轻松地构建、训练和部署机器学习模型。TensorFlow的核心理念是使用计算图来表示复杂的数值计算过程,这使得它能够高效地执行分布式计算和自动微分操作。

TensorFlow的特点之一是其灵活性。它提供了丰富的工具和库,适用于各种机器学习任务和算法。无论是传统的机器学习算法还是深度学习模型,TensorFlow都可以提供强大的支持。此外,TensorFlow还支持多种硬件和平台,包括CPU、GPU和TPU等,使得开发者可以根据实际需求选择最合适的计算资源。

TensorFlow使用计算图来表示机器学习模型。计算图是一种数据流图,其中节点表示操作,边表示数据流。通过将模型表示为计算图,TensorFlow可以对模型进行高效的优化和并行化处理。此外,计算图的结构还使得TensorFlow能够轻松地将模型部署到分布式系统中,实现高性能的分布式训练和推理。

TensorFlow还提供了自动微分的功能,使得开发者可以轻松地计算模型的梯度。这对于训练深度学习模型来说尤为重要,因为梯度计算是反向传播算法的关键步骤。TensorFlow的自动微分功能大大简化了梯度计算的过程,减少了开发者的工作量。

除了这些核心特点之外,TensorFlow还具有丰富的生态系统和社区支持。它提供了许多高级API和预训练模型,使得开发者能够更快地构建模型。此外,TensorFlow还支持可视化工具,如TensorBoard,用于可视化模型的训练过程和性能分析。

总的来说,TensorFlow是一个功能强大、灵活而又易用的机器学习框架。它的设计理念和特点使得开发者能够更加高效地构建、训练和部署机器学习模型,为机器学习和深度学习的研究和应用提供了强大的工具和支持。

下面介绍的是TensorFlow的使用的一个demo例子文章来源地址https://www.toymoban.com/news/detail-496710.html

import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 下载并解压数据集
!wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
!tar -xf CUB_200_2011.tgz

# 设置数据集路径和其他参数
train_data_dir = 'CUB_200_2011/train'  # 训练集路径
validation_data_dir = 'CUB_200_2011/val'  # 验证集路径
test_data_dir = 'CUB_200_2011/test'  # 测试集路径
img_width, img_height = 224, 224  # 图像宽度和高度
batch_size = 32  # 批次大小
num_epochs = 10  # 训练轮数

# 创建图像数据生成器
train_datagen = ImageDataGenerator(
    rescale=1. / 255,  # 像素值缩放为0-1之间
    shear_range=0.2,  # 随机剪切变换
    zoom_range=0.2,  # 随机缩放变换
    horizontal_flip=True)  # 随机水平翻转

validation_datagen = ImageDataGenerator(rescale=1. / 255)  # 验证集不进行数据增强

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')  # 生成训练集图像和标签的批次数据

validation_generator = validation_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')  # 生成验证集图像和标签的批次数据

# 创建并编译ResNet50模型
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3))

model = tf.keras.Sequential([
    base_model,
    tf.keras.layers.GlobalAveragePooling2D(),
    tf.keras.layers.Dense(200, activation='softmax')
])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // batch_size,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // batch_size,
    epochs=num_epochs)

# 保存模型
model.save('bird_classification_model.h5')
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 下载并解压数据集
!wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
!tar -xf CUB_200_2011.tgz

# 设置数据集路径和其他参数
train_data_dir = 'CUB_200_2011/train'  # 训练集路径
validation_data_dir = 'CUB_200_2011/val'  # 验证集路径
test_data_dir = 'CUB_200_2011/test'  # 测试集路径
img_width, img_height = 224, 224  # 图像宽度和高度
batch_size = 32  # 批次大小
num_epochs = 10  # 训练轮数

# 创建图像数据生成器
train_datagen = ImageDataGenerator(
    rescale=1. / 255,  # 像素值缩放为0-1之间
    shear_range=0.2,  # 随机剪切变换
    zoom_range=0.2,  # 随机缩放变换
    horizontal_flip=True)  # 随机水平翻转

validation_datagen = ImageDataGenerator(rescale=1. / 255)  # 验证集不进行数据增强

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')  # 生成训练集图像和标签的批次数据

validation_generator = validation_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')  # 生成验证集图像和标签的批次数据

# 创建并编译ResNet50模型
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3))

model = tf.keras.Sequential([
    base_model,
    tf.keras.layers.GlobalAveragePooling2D(),
    tf.keras.layers.Dense(200, activation='softmax')
])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // batch_size,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // batch_size,
    epochs=num_epochs)

# 保存模型
model.save('bird_classification_model.h5')

五、最后

到了这里,关于鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(四)

    经过前段时间研究,从LeNet-5手写数字入门到最近研究的一篇天气识别。我想干一票大的,因为我本身从事的就是C++/Qt开发,对Qt还是比较熟悉,所以我想实现一个界面化的一个人脸识别。 对卷积神经网络的概念比较陌生的可以看一看这篇文章:卷积实际上是干了什么 想了解

    2024年01月17日
    浏览(183)
  • 果蔬识别系统Python+Django+TensorFlow+卷积神经网络算法

    果蔬识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 视频+代码:https://www.yuque.com/ziwu/

    2024年02月08日
    浏览(84)
  • 基于Tensorflow搭建卷积神经网络CNN(水果识别)保姆及级教程

    项目介绍 TensorFlow2.X 搭建卷积神经网络(CNN),实现水果识别。搭建的卷积神经网络是类似VGG的结构(卷积层与池化层反复堆叠,然后经过全连接层,最后用softmax映射为每个类别的概率,概率最大的即为识别结果)。 网络结构: 开发环境: python==3.7 tensorflow==2.3 数据集: 图片

    2024年02月06日
    浏览(56)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(100)
  • Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(46)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(108)
  • 基于卷积神经网络的农作物病虫害图像识别(Opencv,Pytorch,Tensorflow,MobileNetV3)

    最近做了一个农作物虫害图像识别的程序,在此分享一下。本文用到的深度学习框架为Tensorflow2,Opencv等等!使用的数据集共有61种类别,分别代表不同的虫害类别。使用的网络模型为moblienetv3. Bi 设 Dai 坐 效果视频如下所示: 农作物虫害图像识别 代码如下所示:

    2024年02月11日
    浏览(45)
  • 鸟类识别系统python+TensorFlow+Django网页界面+卷积网络算法+深度学习模型

    鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 视频+代码:https://www.yuque.com/ziwu/

    2024年02月16日
    浏览(40)
  • 猫狗图像识别(卷积神经网络算法,TensorFlow安装)

    目录 一、tensorflow库安装 (1)TensorFlow的历史版本与对应Python版本 (2)Python版本查询 (3)找到上面的版本框进行对应的TensorFlow下载 (4)安装成功 (5)TensorFlow成功验证 二、项目简介 (1)项目说明 (2)项目目的 三、实现过程 (1)库导入 (2)匹配图形 (3)定义图像以

    2024年02月08日
    浏览(46)
  • 手势识别系统Python,基于卷积神经网络算法

    手势识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 视频+代码:https://www.yuque.com/ziwu/

    2024年02月09日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包