CVPR2023 | 70+目标检测论文及代码整理

这篇具有很好参考价值的文章主要介绍了CVPR2023 | 70+目标检测论文及代码整理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目标检测是当下应用最广的计算机视觉任务之一。本文整理了CVPR 2023 目标检测相关论文72篇,覆盖包括2D目标检测、3D目标检测、视频目标检测、人物交互检测、异常检测、伪装目标检测、关键点检测、显著性目标检测、车道线检测、边缘检测等10个细分任务。并且每篇论文都尽可能附了上对应的代码。

合集下载:点我跳转。

2D目标检测

[1]CapDet: Unifying Dense Captioning and Open-World Detection Pretraining

[代码]None

[2]Enhanced Training of Query-Based Object Detection via Selective Query Recollection

[代码]https://github.com/Fangyi-Chen/SQR

[3]DETRs with Hybrid Matching

[代码]https://github.com/HDETR

[4]YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

[代码]https://github.com/WongKinYiu/yolov7

[5]Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection

[代码]https://github.com/LutingWang/OADP

[6]Detecting Everything in the Open World: Towards Universal Object Detection

[代码]https://github.com/zhenyuw16/UniDetector

[7]NeRF-RPN: A general framework for object detection in NeRFs

[代码]https://github.com/lyclyc52/NeRF_RPN

[8]What Can Human Sketches Do for Object Detection?

[代码]https://pinakinathc.github.io/sketch-detect

[9]Object Discovery from Motion-Guided Tokens

[代码]https://github.com/zpbao/motok

[10]Continual Detection Transformer for Incremental Object Detection

[代码]https://lyy.mpi-inf.mpg.de/CL-DETR/

[11]Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains

[代码]https://github.com/K2OKOH/MAD

[12]Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection with Single Point Supervision

[代码]https://github.com/xinyiying/lesps

[13]Benchmarking the Physical-world Adversarial Robustness of Vehicle Detection

[代码]未开源

[14]DetCLIPv2: Scalable Open-Vocabulary Object Detection Pre-training via Word-Region Alignment

[代码]未开源

3D目标检测

[1]CAPE: Camera View Position Embedding for Multi-View 3D Object Detection

[代码]https://github.com/kaixinbear/CAPE

[2]Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency

[代码]https://github.com/weakmono3d/weakmono3d

[3]AeDet: Azimuth-invariant Multi-view 3D Object Detection

[代码]https://github.com/fcjian/AeDet

[4]Bi3D: Bi-domain Active Learning for Cross-domain 3D Object Detection

[代码]https://github.com/PJLab-ADG/3DTrans

[5]PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection

[代码]https://github.com/blvlab/pimae

[6]MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences

[代码]https://github.com/skyhehe123/MSF

[7]Towards Domain Generalization for Multi-view 3D Object Detection in Bird-Eye-View

[代码]None

[8]X³KD: Knowledge Distillation Across Modalities, Tasks and Stages for Multi-Camera 3D Object Detection

[代码]None

[9]Virtual Sparse Convolution for Multimodal 3D Object Detection

[代码]https://github.com/hailanyi/VirConv

[10]MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection

[代码]https://github.com/SxJyJay/MSMDFusion

[11]Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection

[代码]https://github.com/PJLab-ADG/3DTrans

[12]ConQueR: Query Contrast Voxel-DETR for 3D Object Detection

[代码]https://github.com/poodarchu/EFG

[13]LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion

[代码]https://github.com/sankin97/LoGoNet

[14]MonoATT: Online Monocular 3D Object Detection with Adaptive Token Transformer

[代码]未开源

[15]OcTr: Octree-based Transformer for 3D Object Detection

[代码]未开源

[16]VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking

[代码]https://github.com/dvlab-research/VoxelNeXt

[17]Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving

[代码]https://github.com/kkkcx/3D_Corruptions_AD

[18]NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations

[代码]未开源

[19]FrustumFormer: Adaptive Instance-aware Resampling for Multi-view 3D Detection

[代码]https://github.com/Robertwyq/Frustum

[20]Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild

[代码]https://github.com/facebookresearch/omni3d

[21]itKD: Interchange Transfer-based Knowledge Distillation for 3D Object Detection

[代码]https://github.com/hyeon-jo/interchange-transfer-KD

[22]Neural Part Priors: Learning to Optimize Part-Based Object Completion in RGB-D Scans

[代码]http://alexeybokhovkin.github.io/neural-part-priors/

[23]Viewpoint Equivariance for Multi-View 3D Object Detection

[代码]https://github.com/tri-ml/vedet

[24]Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster Object Detection on Drone Images

[代码]https://github.com/Cuogeihong/CEASC

[25]Learned Two-Plane Perspective Prior based Image Resampling for Efficient Object Detection

[代码]未开源

[26]Understanding the Robustness of 3D Object Detection with Bird's-Eye-View Representations in Autonomous Driving

[代码]未开源

[27]Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection

[代码]https://github.com/azhuantou/hssda

[28]Curricular Object Manipulation in LiDAR-based Object Detection

[代码]https://github.com/ZZY816/COM

视频目标检测

[1]SCOTCH and SODA: A Transformer Video Shadow Detection Framework

[项目]https://lihaoliu-cambridge.github.io/scotch_and_soda/

[2]3D Video Object Detection with Learnable Object-Centric Global Optimization

[代码]https://github.com/jiaweihe1996/BA-Det

[3]Collaborative Noisy Label Cleaner: Learning Scene-aware Trailers for Multi-modal Highlight Detection in Movies

[代码]https://github.com/tencentyouturesearch/highlightdetection-clc

[4]Real-time Multi-person Eyeblink Detection in the Wild for Untrimmed Video

[代码]https://github.com/wenzhengzeng/MPEblink

人物交互检测

[1]Detecting Human-Object Contact in Images

[项目]https://hot.is.tue.mpg.de/

[2]Category Query Learning for Human-Object Interaction Classification

[代码]https://github.com/charles-xie/CQL

[3]Instant-NVR: Instant Neural Volumetric Rendering for Human-object Interactions from Monocular RGBD Stream

[代码]https://nowheretrix.github.io/Instant-NVR/

[4]Relational Context Learning for Human-Object Interaction Detection

[代码]http://cvlab.postech.ac.kr/research/MUREN

伪装目标检测

[1]Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers

[代码]https://github.com/ZhouHuang23/FSPNet

显著性目标检测

[1]Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

[代码]https://github.com/moothes/A2S-v2

[2]Sketch2Saliency: Learning to Detect Salient Objects from Human Drawings

[代码]https://ayankumarbhunia.github.io/Sketch2Saliency/

关键点检测

[1]Unified Keypoint-based Action Recognition Framework via Structured Keypoint Pooling

[代码]https://ryohachiuma.github.io/

[2]Few-shot Geometry-Aware Keypoint Localization

[代码]https://xingzhehe.github.io/FewShot3DKP/

车道线检测

[1]BEV-LaneDet: a Simple and Effective 3D Lane Detection Baseline

[代码]https://github.com/gigo-team/bev_lane_det

边缘检测

[1]Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections

[代码]https://github.com/alexander-g/INBD

[2]The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge Detector

[代码]https://github.com/ZhouCX117/UAED

异常检测

[1]DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

[代码]None

[2]Diversity-Measurable Anomaly Detection

[代码]None

[3]Block Selection Method for Using Feature Norm in Out-of-distribution Detection

[代码]https://github.com/gist-ailab/block-selection-for-OOD-detection

[4]Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection

[代码]None

[5]Multimodal Industrial Anomaly Detection via Hybrid Fusion

[代码]https://github.com/nomewang/M3DM

[6]Hierarchical Semantic Contrast for Scene-aware Video Anomaly Detection

[代码]未开源

[7]Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection

[代码]未开源

[8]SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection

[代码]https://github.com/tiangexiang/SQUID

[9]Prompt-Guided Zero-Shot Anomaly Action Recognition using Pretrained Deep Skeleton Features

[代码]未开源

[10]SimpleNet: A Simple Network for Image Anomaly Detection and Localization

[代码]https://github.com/DonaldRR/SimpleNet

[11]WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

[代码]未开源

[12]OpenMix: Exploring Outlier Samples for Misclassification Detection

[代码]https://github.com/Impression2805/OpenMix

[13]Robust Outlier Rejection for 3D Registration with Variational Bayes

[代码]https://github.com/Jiang-HB/VBReg

[14]Video Event Restoration Based on Keyframes for Video Anomaly Detection

[代码]未开源


合集下载地址

点击跳转下载地址文章来源地址https://www.toymoban.com/news/detail-496777.html

到了这里,关于CVPR2023 | 70+目标检测论文及代码整理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包