【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

这篇具有很好参考价值的文章主要介绍了【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言:本章内容主要是演示Vivado下利用Verilog语言进行电路设计、仿真、综合和下载

示例:计数器

 【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器​​

  • 功能特性: 采用 Xilinx Artix-7 XC7A35T芯片 
  • 配置方式:USB-JTAG/SPI Flash
  • 高达100MHz 的内部时钟速度 
  • 存储器:2Mbit SRAM   N25Q064A SPI Flash(样图旧款为N25Q032A)
  • 通用IO:Switch :x8LED:x16Button:x5DIP:x8   通用扩展IO:32pin
  • 音视频/显示: 7段数码管:x8 VGA视频输出接口 Audio音频接口 
  • 通信接口:UART:USB转UART   Bluetooth:蓝牙模块 
  • 模拟接口: DAC:8-bit分辨率   XADC:2路12bit 1Msps ADC

目录

Ⅰ. 前置知识

0x00 利用D触发器构造环形计数器(自循环移位寄存器)

0x01  扭环形计数器(约翰逊计数器)

 Ⅱ. Verilog实现:

0x00 环形计数器

0x01 扭环计数器


Ⅰ. 前置知识

0x00 利用D触发器构造环形计数器(自循环移位寄存器)

下图为利用D触发器构造的计数器电路,如果初始时将A、B、C、D置为1000,CP接单脉冲计数,则计数器可以实现one-hot计数。

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

环形计数器原理

参考程序如下,

module circle_counter(rst_n, clk, cnt ); 
parameter CNT_SIZE = 8;
input rst_n;
input clk;
output [CNT_SIZE-1 : 0] cnt;
reg [CNT_SIZE-1 : 0] cnt;
always@(posedge clk)
    if(!rst_n)
        cnt <= 8'b0000_0001;  //初始值
    else
        cnt <= {cnt[0],cnt[CNT_SIZE-1 : 1]};//注意是循环移位,而非简单的移位
        //cnt <= cnt>>1;
Endmodule

在下图中,用74LS10的三输入端与非门修改上述电路,使得初始值0000启动时,下一个CP脉冲时计数器状态可以自行跳至1000。

请自行总结自启动的体会。(注意:74LS10有一个门起非门作用)

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

  自启式环形计数器

参考程序如下:

module circle_counter(rst_n, clk, cnt ); 
parameter CNT_SIZE = 8;
input rst_n;
input clk;
output [CNT_SIZE-1 : 0] cnt;
reg [CNT_SIZE-1 : 0] cnt;
always@(posedge clk)
    if(!rst_n)
        cnt <= 8'b0000_0001;  //初始值
    else
        cnt <= {cnt[0],cnt[CNT_SIZE-1 : 1]};//注意是循环移位,而非简单的移位
        //cnt <= cnt>>1;
Endmodule

上面的代码仅仅是简单的实现,模拟环形计数器的工作方式,并没有过多的考虑自启动的问题。

对于环形计数器,功能上又被称作one-hot(独热码)计数器,优点是速度快,且每次只有两个bit发生跳变,而且不需外加译码电路,可以直接以各个触发器输出端的1状态表示计数。

主要缺点是没有有效利用电路的状态,对于n bit,有2n-n个状态没有利用。应用中,在状态机的状态编码时,经常用到此类计数器,如4bit one-hot计数器的计数序列即为:0001-0010-0100-1000循环。也因此,大多情况下这种计数器不被称作计数器,而是状态编码的一种。

若要设计可以自启动(自动从无效状态转移到有效状态,进入有效循环)的电路,可参考附加实验中状态机设计的实验内容,通过修改状态逻辑实现,本质是改变无效状态的次态,使其为有效状态。

0x01  扭环形计数器(约翰逊计数器)

基本原理:设置一个初始状态,将最高位取反,作为最低位的输入,通过移位即可得到。

如图:

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

  扭环形计数器原理示意

参考代码:

module john_counter(rst_n, clk, cnt );
parameter CNT_SIZE = 4;
input rst_n;
input clk;
output [CNT_SIZE-1 : 0] cnt;
reg [CNT_SIZE-1 : 0] cnt;
always@(posedge clk)
    if(!rst_n)
        cnt <= 4'b0000 ;  //初始值
    else
        cnt <= {~cnt[0],cnt[CNT_SIZE-1 : 1]}; //注意是循环移位,而非简单的移位
endmodule

 Ⅱ. Verilog实现:

0x00 环形计数器

设计代码:

module circle_counter(rst_n, clk, cnt ); 
parameter CNT_SIZE = 8;
input rst_n;
input clk;
output [CNT_SIZE-1 : 0] cnt;
reg [CNT_SIZE-1 : 0] cnt;
always@(posedge clk)
 if(!rst_n)
 cnt <= 8'b0000_0001; 
 else
 cnt <= {cnt[0],cnt[CNT_SIZE-1 : 1]};
endmodule

仿真代码:

module test();
reg rst_n,clk;
wire [7:0]cnt;
circle_counter uut(.rst_n(rst_n),. clk(clk),. cnt(cnt));
initial begin 
		clk = 'b0;
		rst_n = 'b0;
		# 10
		rst_n = 'b1;
        # 2000
                $finish;
            end
        
            always #5 clk = ~clk;
endmodule

仿真波形图:

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

0x01 扭环计数器

 设计文件:

module john_counter(rst_n, clk, cnt );
parameter CNT_SIZE = 4;
input rst_n;
input clk;
output [CNT_SIZE-1 : 0] cnt;
reg [CNT_SIZE-1 : 0] cnt;
always@(posedge clk)
 if(!rst_n)
 cnt <= 4'b0000 ; 
 else
 cnt <= {~cnt[0],cnt[CNT_SIZE-1 : 1]}; 
 endmodule

仿真文件:

module tb_john_counter();
	reg clk, rst_n;
	wire [3:0] cnt;
john_counter uut(.rst_n(rst_n),. clk(clk),. cnt(cnt));
	initial begin 
		clk = 'b0;
		rst_n = 'b0;
		# 10
		rst_n = 'b1;
		# 2000
		$finish;
	end
	always #5 clk = ~clk;
Endmodule

仿真波形图:

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器文章来源地址https://www.toymoban.com/news/detail-497001.html

到了这里,关于【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【FPGA】Verilog:模块化组合逻辑电路设计 | 半加器 | 全加器 | 串行加法器 | 子模块 | 主模块

    前言: 本章内容主要是演示Vivado下利用Verilog语言进行电路设计、仿真、综合和下载 示例:加法器   ​ 功能特性: 采用 Xilinx Artix-7 XC7A35T芯片  配置方式:USB-JTAG/SPI Flash 高达100MHz 的内部时钟速度  存储器:2Mbit SRAM   N25Q064A SPI Flash(样图旧款为N25Q032A) 通用IO:Switch :

    2024年02月15日
    浏览(47)
  • 数字电路硬件设计系列(十七)之上电时序控制电路

    上电时序,也叫做Power-up Sequence,是指电源时序关系。 下面 就是一系列电源的上电的先后关系: 采用不同的电容来控制上电延时时间的长短,具体的电路见下图: 这种上电时序控制的方式, 电路结构简单 ,但是 延时时间难以精确的控制 。 在FPGA的电源时序控制中,应用十

    2024年02月12日
    浏览(49)
  • 基于Verilog设计的复位电路设计

    复位指的是将寄存器中的值全部置成默认值,一般复位包括同步复位和异步复位,复位可以由硬件开关控制,也可以由软件逻辑控制。复位电路复杂是因为复位本身是对大规模的硬件单元进行一种操作,必须要结合底层的设计来考虑问题。 相信大家在学习 FPGA 或者 ASIC 的时候

    2024年02月02日
    浏览(44)
  • 数字逻辑基础实验二—时序逻辑电路的设计

    实验目的 (1)掌握中规模集成寄存器构成的时序逻辑电路的设计方法。 (2)掌握中规模集成计数器设计N进制计数器的方法。 (3)学会用时序功能器件构成综合型应用电路。 实验电路 图 2-1红绿灯电路 实验软件与环境 软件  Multisim 14.2 环境  Windows 11 专业版21H2 设备名称 

    2023年04月21日
    浏览(42)
  • 时序逻辑电路的设计(二) -- 篮球比赛24秒倒计时电路(附Multisim)

    1. 设计要求         篮球比赛中,进攻一方取得球权后双方开始比赛,若24秒到,该进攻一方仍然没有投球时,需要交换发球权。本实验要求设计一个24秒违例计时器(倒计时方式),当计时24秒时间到,用一个红色指示灯亮表示,指示灯持续点亮5秒。         要求电

    2024年02月08日
    浏览(53)
  • 【【Verilog典型电路设计之log函数的Verilog HDL设计】】

    log函数是一种典型的单目计算函数,与其相应的还有指数函数、三角函数等。对于单目计算函数的硬件加速器设计一般两种简单方法:一种是查找表的方式;一种是使用泰勒级数展开成多项式进行近似计算。这两种方式在设计方法和精确度方面有很大的不同。查找表方式是通过

    2024年02月11日
    浏览(41)
  • Verilog学习笔记(3):Verilog数字逻辑电路设计方法

    例:用Verilog设计模256(8bits)计数器 (a)可综合程序描述方式 (b)常见的错误描述方式 同时Verilog的电路描述方式具有多样性,这也决定了对于电路设计的多样性。 例:用Verilog设计数字多路选择器 (a)采用真值表形式的代码 (b)采用逻辑表达式形式的代码 (c)采用结

    2023年04月08日
    浏览(117)
  • Verilog含1个数统计电路设计

    项目要求: 待检测数据“1”由外部输入,并用LED灯显示; 待检测串行数据长度为256位,由ROM输出; 一组数据检测完毕后,指示信号DONE为1; “1”的个数由数码管显示; 设计时需给出仿真结果。 设计结果下载到FPGA上实现功能的硬件验证。 Clk_1k 频率为1kHz的时钟信号,上升沿

    2024年02月08日
    浏览(41)
  • 【【verilog典型电路设计之流水线结构】】

    下图是一个4位的乘法器结构,用verilog HDL 设计一个两级流水线加法器树4位乘法器 对于流水线结构 其实需要做的是在每级之间增加一个暂存的数据用来存储 我们得到的东西 我们一般来说会通过在每一级之间插入D触发器来保证数据的联通 通过在第一级和第二级,第二级和第

    2024年02月12日
    浏览(36)
  • 从零学verilog系列(4)组合逻辑电路设计方法

      目录 1.组合电路设计方法 1.1真值表方式(本质是最小项表达式) 1.2逻辑表达式方式 1.3结构描述方式 1.4抽象描述方式(从电路功能出发) 2组合电路设计项目 2.1数字加法器 半加器(1位加法器) 全加器 串行进位加法器(行波进位加法器) 超前进位加法器 2.2数据比较器 2.3数据选

    2024年02月04日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包