使用PyMC进行时间序列分层建模

这篇具有很好参考价值的文章主要介绍了使用PyMC进行时间序列分层建模。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在统计建模领域,理解总体趋势的同时解释群体差异的一个强大方法是分层(或多层)建模。这种方法允许参数随组而变化,并捕获组内和组间的变化。在时间序列数据中,这些特定于组的参数可以表示不同组随时间的不同模式。

今天,我们将深入探讨如何使用PyMC(用于概率编程的Python库)构建分层时间序列模型。

让我们从为多个组生成一些人工时间序列数据开始,每个组都有自己的截距和斜率。

 import numpy as np
 import matplotlib.pyplot as plt
 import pymc as pm
 
 # Simulating some data
 np.random.seed(0)
 n_groups = 3  # number of groups
 n_data_points = 100  # number of data points per group
 x = np.tile(np.linspace(0, 10, n_data_points), n_groups)
 group_indicator = np.repeat(np.arange(n_groups), n_data_points)
 slope_true = np.random.normal(0, 1, size=n_groups)
 intercept_true = np.random.normal(2, 1, size=n_groups)
 y = slope_true[group_indicator]*x + intercept_true[group_indicator] + np.random.normal(0, 1, size=n_groups*n_data_points)

我们生成了三个不同组的时间序列数据。每组都有自己的时间趋势,由唯一的截距和斜率定义。

 colors = ['b', 'g', 'r']  # Define different colors for each group
 
 plt.figure(figsize=(10, 5))
 
 # Plot raw data for each group
 for i in range(n_groups):
     plt.plot(x[group_indicator == i], y[group_indicator == i], 'o', color=colors[i], label=f'Group {i+1}')
 
 plt.title('Raw Data with Groups')
 plt.xlabel('Time')
 plt.ylabel('Value')
 plt.legend()
 plt.show()

使用PyMC进行时间序列分层建模

下一步是构建层次模型。我们的模型将具有组特定的截距(alpha)和斜率(beta)。截距和斜率是从具有超参数mu_alpha、sigma_alpha、mu_beta和sigma_beta的正态分布中绘制的。这些超参数分别表示截距和斜率的组水平均值和标准差。

 with pm.Model() as hierarchical_model:
     # Hyperpriors
     mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=10)
     sigma_alpha = pm.HalfNormal('sigma_alpha', sigma=10)
     mu_beta = pm.Normal('mu_beta', mu=0, sigma=10)
     sigma_beta = pm.HalfNormal('sigma_beta', sigma=10)
   
     # Priors
     alpha = pm.Normal('alpha', mu=mu_alpha, sigma=sigma_alpha, shape=n_groups)  # group-specific intercepts
     beta = pm.Normal('beta', mu=mu_beta, sigma=sigma_beta, shape=n_groups)  # group-specific slopes
     sigma = pm.HalfNormal('sigma', sigma=1)
 
     # Expected value
     mu = alpha[group_indicator] + beta[group_indicator] * x
 
     # Likelihood
     y_obs = pm.Normal('y_obs', mu=mu, sigma=sigma, observed=y)
 
     # Sampling
     trace = pm.sample(2000, tune=1000)

现在我们已经定义了模型并对其进行了采样。让我们检查不同参数的模型估计:

 # Checking the trace
 pm.plot_trace(trace,var_names=['alpha','beta'])
 plt.show()

使用PyMC进行时间序列分层建模

最后一步是将原始数据和模型预测可视化:

 # Posterior samples
 alpha_samples = trace.posterior['alpha'].values
 beta_samples = trace.posterior['beta'].values
 
 # New x values for predictions
 x_new = np.linspace(0, 10, 200)
 
 plt.figure(figsize=(10, 5))
 
 # Plot raw data and predictions for each group
 for i in range(n_groups):
     # Plot raw data
     
     plt.plot(x[group_indicator == i], y[group_indicator == i], 'o', color=colors[i], label=f'Group {i+1} observed')
     x_new = x[group_indicator == i]
     # Generate and plot predictions
     alpha = trace.posterior.sel(alpha_dim_0=i,beta_dim_0=i)['alpha'].values
     beta = trace.posterior.sel(alpha_dim_0=i,beta_dim_0=i)['beta'].values
     y_hat = alpha[..., None] + beta[..., None] * x_new[None,:]
     y_hat_mean = y_hat.mean(axis=(0, 1))
     y_hat_std = y_hat.std(axis=(0, 1))
     plt.plot(x_new, y_hat_mean, color=colors[i], label=f'Group {i+1} predicted')
     plt.fill_between(x_new, y_hat_mean - 2*y_hat_std, y_hat_mean + 2*y_hat_std, color=colors[i], alpha=0.3)
 
 plt.title('Raw Data with Posterior Predictions by Group')
 plt.xlabel('Time')
 plt.ylabel('Value')
 plt.legend()
 plt.show()

使用PyMC进行时间序列分层建模

从图中可以看出,分层时间序列模型很好地捕获了每组中的单个趋势,而阴影区域给出了预测的不确定性。

层次模型为捕获时间序列数据中的组级变化提供了一个强大的框架。它们允许我们在组之间共享统计数据,提供部分信息池和对数据结构的细微理解。使用像PyMC这样的库,实现这些模型变得相当简单,为健壮且可解释的时间序列分析铺平了道路。

https://avoid.overfit.cn/post/56ad545325504850ab2b7b7b9a264a61

作者:Charles Copley文章来源地址https://www.toymoban.com/news/detail-497252.html

到了这里,关于使用PyMC进行时间序列分层建模的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 Ploomber、Arima、Python 和 Slurm 进行时间序列预测

    推荐:使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 笔记本由 8 个任务组成,如下图所示。它包括建模的大多数基本步骤 - 获取数据清理、拟合、超参数调优、验证和可视化。作为捷径,我拿起笔记本并使用Soorgeon工具自动将笔记本模块化到Ploomber管道中。这会将

    2024年02月12日
    浏览(48)
  • 【数学建模】时间序列分析

    1.使用于具有时间、数值两种要素 2.数据具有周期性可以使用时间序列分解 叠加模型【Y=T+S+C+I】 序列的季节波动变化越来越大,反映变动之间的关系发生变化 乘积序列【Y=T S C*I】 时间序列波动保持恒定,可以使用叠加模型 数据预处理——开头结尾有缺失值,直接删掉即可

    2024年02月15日
    浏览(46)
  • 【数学建模】--时间序列分析

    时间序列分析概念与时间序列分解模型 定义:时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去,分线规律和预测未来,本讲将主要介绍时间序列分析中常用的三种模型:季节分解指数

    2024年02月13日
    浏览(45)
  • 数学建模:14 时间序列

    目录 步骤 基本概念 时间序列分解 叠加 / 乘积模型 使用SPSS的实例 步骤 指数平滑模型 Simple模型 线性趋势模型 布朗线性趋势模型 阻尼趋势模型 简单季节性 温特加法模型 温特乘法模型 一元时间序列分析的模型 基础概念 平稳时间序列、白噪声序列 差分方程及其特征方程 滞

    2024年02月09日
    浏览(36)
  • 数学建模--时间序列分析

    目录 1.时间序列 2.平稳时间序列 差分方程 滞后因子 时序平稳性  自回归模型AR(P) 滑动平均模型 MA(q) 自回归移动平均模型ARMA(p,q) 3.matlab时序分析 garchset函数 garchfit函数 4.案例分析         时间序列分析是一种数据分析方法,它研究的对象是代表某一现象的一串随时间

    2024年02月12日
    浏览(44)
  • 数学建模-时间序列预测步骤

    目录 数据 第一步:定义时间 第二步:创建传统模型 结果 论文下笔 GG 点击条件,点击 离群值全部勾选 点击统计 点击图 保存 选项   由于我们的数据中不存在缺失值,且为季度数据,则可以作出时间序列图 从图中可以看出,销量数据存在递增趋势并且有很明显的季节性波动

    2024年01月19日
    浏览(56)
  • 第85步 时间序列建模实战:CNN回归建模

    一、写在前面 这一期,我们介绍CNN回归。 同样,这里使用这个数据: 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热

    2024年02月07日
    浏览(51)
  • 第87步 时间序列建模实战:LSTM回归建模

    一、写在前面 这一期,我们介绍大名鼎鼎的LSTM回归。 同样,这里使用这个数据: 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综

    2024年02月07日
    浏览(39)
  • 数学建模:ARMA时间序列预测

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 时间序列是按时间顺序的一组数字序列 时间序列的特点: 现实的、真实的一组数据,时间序列背后是某一现象的变化规律,时间序列预测就是学习之前的规律来预测后面的值 判断时间序列数据 是否平稳 ,若非平稳需要做 差

    2024年02月11日
    浏览(44)
  • 数学建模——时间序列预测(股价预测)

    完整数据及代码:数学建模+时间序列预测+LSTM+股票数据分析-机器学习文档类资源-CSDN下载          股票数据由代码、简称、时间、开盘价、收盘价、最高价、最低价、前收盘价、成交量、成交金额、PE、市净率、换手率组成,其中,代码、简称、时间不用于建模,PE、市

    2024年02月05日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包