1. 阿克曼公式
设有如下系统
{
x
˙
=
A
x
+
B
u
y
=
C
x
\begin{cases} \dot x = Ax + Bu \\ y = Cx \end{cases}
{x˙=Ax+Buy=Cx显然,通过矩阵A能够得到其特征多项式
φ
A
(
λ
)
=
λ
n
+
a
n
−
1
λ
n
−
1
+
⋯
+
a
1
λ
+
a
0
\varphi _A ( \lambda ) = \lambda ^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0
φA(λ)=λn+an−1λn−1+⋯+a1λ+a0通过将控制量设为模态反馈控制(详见模态反馈控制一文)
u
=
−
K
x
u = - Kx
u=−Kx系统演变为
x
˙
=
(
A
−
B
K
)
x
\dot x = \left( A - BK \right) x
x˙=(A−BK)x假设期望系统的期望特征多项式为
φ
w
(
λ
)
=
λ
n
+
γ
n
−
1
λ
n
−
1
+
⋯
+
γ
1
λ
+
γ
0
\varphi _w ( \lambda ) = \lambda ^n + \gamma_{n-1} \lambda^{n-1} + \cdots + \gamma_1 \lambda + \gamma_0
φw(λ)=λn+γn−1λn−1+⋯+γ1λ+γ0那么有阿克曼公式
K
=
[
0
0
⋯
0
1
]
⋅
[
B
A
B
⋯
A
n
−
1
B
]
−
1
⋅
φ
w
(
A
)
(1)
K = \left[ \begin{matrix} 0 & 0 & \cdots & 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB & \cdots & A^{n-1} B \end{matrix} \right]^{-1} \cdot \varphi _w (A) \tag{1}
K=[00⋯01]⋅[BAB⋯An−1B]−1⋅φw(A)(1)其中
φ
w
(
A
)
=
A
n
+
γ
n
−
1
A
n
−
1
+
⋯
+
γ
1
A
+
γ
0
I
(2)
\varphi _w (A) = A ^n + \gamma_{n-1} A^{n-1} + \cdots + \gamma_1 A + \gamma_0 I \tag{2}
φw(A)=An+γn−1An−1+⋯+γ1A+γ0I(2)利用式(1)和(2),可以计算出模态反馈控制中所需的增益矩阵
K
K
K。
2. 举例
例:设系统的柯西形式为
A
=
[
0
1
−
2
−
3
]
,
B
=
[
0
1
]
A = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right], \quad B = \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right]
A=[0−21−3],B=[01]试确定
K
1
,
K
2
K_1, K_2
K1,K2,使得系统的期望特征多项式为
φ
w
(
s
)
=
s
2
+
4
s
+
3
\varphi _w (s) = s^2 + 4s + 3
φw(s)=s2+4s+3。文章来源:https://www.toymoban.com/news/detail-497450.html
系统为2阶,即
n
=
2
n=2
n=2,故可以先计算
A
B
AB
AB与
A
2
A^2
A2:
A
B
=
[
0
1
−
2
−
3
]
⋅
[
0
1
]
=
[
1
−
3
]
AB = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} 1 \\ -3 \end{matrix} \right]
AB=[0−21−3]⋅[01]=[1−3]
A
2
=
[
0
1
−
2
−
3
]
⋅
[
0
1
−
2
−
3
]
=
[
−
2
−
3
6
7
]
A^2 = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] = \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right]
A2=[0−21−3]⋅[0−21−3]=[−26−37]期望的多项式为
s
2
+
4
s
+
3
s^2 + 4s + 3
s2+4s+3,可以得到
γ
0
=
3
,
γ
1
=
4
\gamma_0 = 3, \gamma_1 = 4
γ0=3,γ1=4。则
φ
w
(
A
)
=
A
2
+
γ
1
A
+
γ
0
I
=
[
−
2
−
3
6
7
]
+
4
[
0
1
−
2
−
3
]
+
3
[
1
0
0
1
]
=
[
1
1
−
2
−
2
]
\begin{aligned} \varphi _w (A) &= A ^2 + \gamma_1 A + \gamma_0 I \\ &= \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right] + 4 \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] + 3 \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \end{aligned}
φw(A)=A2+γ1A+γ0I=[−26−37]+4[0−21−3]+3[1001]=[1−21−2]那么,根据式(1)有
K
=
[
0
1
]
⋅
[
B
A
B
]
−
1
⋅
φ
w
(
A
)
=
[
0
1
]
⋅
[
0
1
1
−
3
]
−
1
⋅
[
1
1
−
2
−
2
]
=
[
1
1
]
\begin{aligned} K &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB \end{matrix} \right]^{-1} \cdot \varphi _w (A) \\ &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ 1 & -3 \end{matrix} \right]^{-1} \cdot \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \end{matrix} \right] \end{aligned}
K=[01]⋅[BAB]−1⋅φw(A)=[01]⋅[011−3]−1⋅[1−21−2]=[11]即:负反馈通路中的矩阵
K
K
K为
K
=
[
1
1
]
K = \left[ \begin{matrix} 1 & 1 \end{matrix} \right]
K=[11]相应的控制量为
u
=
−
K
x
=
−
x
1
−
x
2
u = -K x = -x_1 - x_2
u=−Kx=−x1−x2文章来源地址https://www.toymoban.com/news/detail-497450.html
到了这里,关于阿克曼公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!