【算法设计与分析】回溯法解决运动员配对问题(课程设计)

这篇具有很好参考价值的文章主要介绍了【算法设计与分析】回溯法解决运动员配对问题(课程设计)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回溯法解决运动员配对问题

摘要

针对运动员最佳配对问题,本文利用回溯法寻求竞赛优势得分最优解,研究男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。针对这一问题,本题采用的是男运动员选女运动员的方法,构成了一棵排列树。树的结点表示女运动员,排列树的层数表示男运动员,经过算法处理后,输出符合最优值的编号。算例结果显示:男1号和女1号组合、男2号和女3号组合,男3号和女2号组合,竞赛优势最大。该算法简便、易懂,又有比较好的实用性和技巧性。

1、问题描述

羽毛球队有男女运动员各n 人。给定2 个n×n 矩阵P 和Q。P[i][j] 是男运动员i 和女运动员j 配对组成混合双打的男运动员竞赛优势;Q[i][j] 是女运动员i 和男运动员j 配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j] 不一定等于Q[j][i] 。男运动员i 和女运动员j 配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i] 。设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。

2、问题分析

该问题输出为男女人员的搭配问题,由于运动员不能重复选择,因此,此问题的解空间树是一个排列树,可以使用排列树回溯法模板进行算法设计。
假设n为羽毛球队有男女运动员数量,P[i][j] 是男运动员i 和女运动员j 配对组成混合双打的男运动员竞赛优势;Q[i][j] 是女运动员i 和男运动员j 配合的女运动员竞赛优势
本题采用的是男运动员选女运动员的方法,这样就构成了一棵排列树。G表示女运动员,排列树的层数表示男运动员。
下面考虑剪枝函数,因为当人员没有选完时,不确定最终结果是否优于最优解,所以回溯过程中不需要剪枝函数进行剪枝,只有当一条分支运行到叶子结点时,才需要判断可行解于最优解的关系,考虑是否更新最优解。
最后考虑输出结果,输出结果应该时是包含运动员编号的集合,用x[i]表示,原数组存放初始编号,经过算法处理后,输出符合最优值的编号。

3、算法设计

首先将第 i 位男运动员与第 j 位女运动员的优势计算到二维数组j[ i ][ j ] 中,然后再在这个二维数组选 n 个组合(组合即对应每个点(i , j)),要求 n 个点不可同行或同列,将 n 个这样子符合条件的点求和,记录最大值。
第 i 层回溯对应第 i 位男运动员,该层回溯中应该选取一位没有被选择过的女运动员。为了记录女运动员是否被选择过,我们创建数组 x[ i ] 来记录,依次累加每一层的优势。当 i > n 时即为回溯的终点,此时更新最大的优势和。

4、程序代码

#include <stdio.h>
#include <stdlib.h>

int if_OK(int c[], int K){  // 判断是否为一个解
int i,flag;
int arr[21] = {0};
for(i = 1; i <= K; i++){
arr[c[i]] += 1;
    }
    for(i = 1, flag = 1; i <= K; i++){
        if(arr[i] != 1){
            flag = 0;
            break;
        }
    }
    return flag;
}


int is_part(int c[], int K){ // 判断是否为部分解
    int i, flag;
    int arr[21] = {0};
    for(i = 1; i <= K; i++){
        arr[c[i]] += 1;
    }

    for(i = 1, flag = 0; i <= K; i++){ // 这里与 if_OK 有区别
        if(arr[i] > 1){  
            flag = 0;
            break;
        }
        else if(arr[i] == 0){
            flag = 1;
        }
    }
    return flag;
}

int func(int c[], int f[21][21], int K){ // 计算该解情况下,男女运动员竞赛优势的总和
    int i, count = 0;
    for(i = 1; i <= K; i++){
        count += f[i][c[i]];
    }
    return count;
}

int main()
{    int i, j;
    int N;
    scanf("%d", &N);

    int p[21][21], q[21][21], f[21][21]; // p 记录男运动员的竞赛优势、 q记录女运动员的、 f是男女运动员匹配后的 。并且数组都是从 1开始的。
    for(i = 1; i <= N; i++){
        for(j = 1; j <= N; j++){
            scanf("%d", &(p[i][j]));
        }
    }
    for(i = 1; i <= N; i++){
        for(j = 1; j <= N; j++){
            scanf("%d", &(q[i][j]));
            f[j][i] = q[i][j] * p[j][i]; // 注意此处f、 p、 q的数组下标 !!!
        }
    }

    int com[21] = {0}; // 用来记录男女队员的匹配, com【i】中的 i 代表男队员、com【i】代表女队员
    int k = 1, tmp = 0, count = 0; //k队员编号,tmp是当前解的优势值, count是最优的优势值

    while(k >= 1 && k <= N){ // 注意 k <= N
        while(com[k] <= N){
            com[k] = com[k] + 1;
            if(if_OK(com, N)){ // 表示该com【】为一组解
                tmp = func(com, f, N);
                if(tmp > count) count = tmp; // 记录最优解
                break;
            }
            else if(is_part(com, N)) k = k+1; // 部分解
        }
        com[k] = 0;
        k = k-1;
    }

    printf("%d" , count);
    return 0;
}

5、运行结果

假设n为羽毛球队有男女运动员数量,P[i][j] 是男运动员i 和女运动员j 配对组成混合双打的男运动员竞赛优势;Q[i][j] 是女运动员i 和男运动员j 配合的女运动员竞赛优势
【算法设计与分析】回溯法解决运动员配对问题(课程设计)
本题采用的是男运动员选女运动员的方法,这样就构成了一棵排列树。G表示女运动员,排列树的层数表示男运动员。如第一层的G1=20表示,男运动员1号选女运动员1号的男女双方竞赛优势为20。
【算法设计与分析】回溯法解决运动员配对问题(课程设计)

6、运行结果分析

输出结果应该时是运动员编号的集合,用x [i]表示,原数组存放初始编号,经过算法处理后,输出符合最优值的编号。
由排列树和输出结果可知,采用男运动员选女运动员的策略,其解空间是{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}竞赛优势最大为20+20+12=52,最优集合编号为x={1,3,2},即男1号和女1号组合、男2号和女3号组合,男3号和女2号组合,竞赛优势最大。时间复杂度分析:算法要动态的生成排列树,在每个节点处花费O(1)的时间,排列树中结点的个数为n!,因此,算法的时间复杂度为O(n!)。文章来源地址https://www.toymoban.com/news/detail-497821.html

到了这里,关于【算法设计与分析】回溯法解决运动员配对问题(课程设计)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法分析与设计】第八章-回溯法

    约束条件 分为 显式约束 和 隐式约束 显式:规定了问题的解的分量的取值范围。如求n的全排列每个位置只能取1~n 隐式:用于判定候选解是否为可行解。如全排列的每个数字不允许重复。 问题状态和状态空间树         状态空间树是 描述问题解空间 的树形结构,每个结

    2024年02月08日
    浏览(48)
  • 【算法设计与分析】3.回溯法—地图填色问题

    回溯法地图填色pre ppt 回溯法地图填色报告word 回溯法地图填色c++源代码 目录 相关资源下载 碎碎念 概览 背景知识 问题描述: 原理 回溯算法原理 回溯法涉及几个概念 回溯法伪代码 地图填色(回溯法) 搜索顺序策略(按优先级排序) 剪枝策略 地图数据获取 回溯填色伪代码

    2023年04月22日
    浏览(37)
  • 7-1 子集和问题--回溯法(算法设计与分析)

    作者 陈晓梅    单位 广东外语外贸大学 设集合S={x1,x2,…,xn}是一个正整数集合,c是一个正整数,子集和问题判定是否存在S的一个子集S1,使S1中的元素之和为c。试设计一个解子集和问题的回溯法,并输出利用回溯法在搜索树(按输入顺序建立)中找到的第一个解。 输入格

    2024年02月04日
    浏览(42)
  • 计算机算法分析与设计(22)---回溯法(最小重量机器设计问题)

     设某一机器由 n n n 个部件组成,每种部件都可以从 m m m 个不同的供应商处购得。设 w i j w_{ij} w ij ​ 是从供应商 j j j 处购得的部件i的重置, c i j c_{ij} c ij ​ 是相应的价格。设计一个算法,给出总价格不超过 d d d 的最小重量机器设计。 数据输入: 第 1 1 1 行有 3 3 3 个正整

    2024年02月06日
    浏览(46)
  • 剑指 Offer !!13. 机器人的运动范围(回溯算法)

    剑指 Offer 13. 机器人的运动范围 地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能

    2024年02月11日
    浏览(41)
  • 算法分析与设计考前冲刺 (算法基础、数据结构与STL、递归和分治、 动态规划、贪心算法、 回溯算法)

    算法分析与设计考前冲刺 算法基础 算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。 程序是算法用某种程序设计语言的具体的 具体实现 算法特征: 有穷性(有限步) 确定性 输入 输出 可行性(有限时间) 算法的复杂性: 时间复杂性 和空间复

    2024年02月02日
    浏览(44)
  • 剑指offer(C++)-JZ13:机器人的运动范围(算法-回溯)

    作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 地上有一个 rows 行和 cols 列的方格。坐标从 [0,0] 到 [rows-1,cols-1] 。一个机器人从坐标 [0,0] 的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,

    2024年02月12日
    浏览(47)
  • 算法分析五:回溯法与分⽀限界法

    1. 基本思想与解题步骤 基本思想: 把问题的解空间转化成了图或者树的结构表⽰,然后使⽤深度优先搜索策略进⾏遍历,遍历的过程中记录和寻找所有可⾏解或者最优解。 解题步骤: 针对所给问题,定义问题的解空间; 确定易于搜索的解空间结构; 以深度优先⽅式搜索解

    2024年02月09日
    浏览(31)
  • 【算法】回溯:与递归,dfs的同质与分别,剪枝与恢复现场的详细理解,n皇后的回溯解法及算法复杂度分析。

    目录 ​编辑 1.什么是回溯 2.关于剪枝 3.关于恢复现场 4.题目:二叉树的所有路径(凸显恢复现场:切实感受回溯与深搜) 问题分析 ①函数设置为:void Dfs(root) ②函数设置为:void Dfs(root,path) 解题思想:使⽤深度优先遍历(DFS)求解。 代码实现 5.N后问题 问题分析 4皇后的放置

    2024年04月16日
    浏览(41)
  • (软考-软件设计师.下午)动态规划算法、回溯算法、贪心算法、分治算法的应用

    :【递归技术】【二分查找】 分治法的设计思路: 将一个难以直接解决的 大问题 分解成一些 规模较小 的相同问题以便于 逐个击破,分而治之 。      由代码可以看出二分查找也属于分治法的一种,关于二分查找,这位博主总结的很详细。  :【查表】   动

    2024年02月06日
    浏览(78)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包