Flink流批一体计算(1):流批一体和Flink概述

这篇具有很好参考价值的文章主要介绍了Flink流批一体计算(1):流批一体和Flink概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Apache Flink应运而生

数字化经济革命的浪潮正在颠覆性地改变着人类的工作方式和生活方式,数字化经济在全球经济增长中扮演着越来越重要的角色,以互联网、云计算、大数据、物联网、人工智能为代表的数字技术近几年发展迅猛,数字技术与传统产业的深度融合释放出巨大能量,成为引领经济发展的强劲动力。

大数据技术从2008年开始在国内逐渐兴起,到现在已经十几年了,在这段时间里,IT也在飞速发展,而大数据的出现和使用无疑给IT的迅猛发展提供了一臂之力。随着时间的推移,越来越多的公司在实时处理层面要求更高,希望数据从产生到完全被处理之间的时间延迟尽量减小,且能够应对实时处理带来的各种复杂问题,如数据延迟、数据的状态保存、复杂事件的检测机制等。

Apache Flink在这种背景下应运而生,它是一个面向数据流式处理和批量数据处理的可分布式开源计算框架,它基于同一个Flink流式执行模型(Streaming Execution Model),能够支持流式处理和批量处理两种应用类型。

Flink在实现流式处理和批量处理时,与传统方案完全不同,它从另一个视角看待流式处理和批量处理,将二者统一起来:Flink完全支持流式处理,也就是说被看作流式处理时输入数据流是无界的;而批量处理被作为一种特殊的流式处理,只是它的输入数据流被定义为有界。

为什么要搞流批一体

​ 通过批流一体的计算引擎,在数据处理链路上能够得到很多的好处:

  • 减少学习成本,用户不再需要学习两套计算引擎,并且通过统一的引擎,使用相同的计算语义,出错的可能也会大大降低。
  • 减少资源消耗,在原先的lamda架构下,同时存在批和流两个数据处理通道,通过流批一体,将会只存在一个数据处理通道。此外,相比批计算短时间面对大量的数据集,流计算面对的数据集较小,所需要的计算资源会大大降低。
  • 降低架构复杂性,批计算满足完整性,流计算提供实时性,批计算和流计算又分别关联了不同的上下游,导致数据处理架构异常复杂,通过流批一体以及流批一体的上下游,简化的数据处理架构不仅仅带来了架构上的简洁优美,更多的是业务处理上的统一和稳定。
  • 提升价值产出效率,通过使用流计算来替代批计算,原先高延迟的数据产出变得更加实时,能够更有效的支持业务的价值产出。

基于Apache Flink构建流批一体架构

首先,Flink 是一套 Flink SQL 开发,不存在两套开发成本。一个开发团队,一套技术栈,就可以做所有的离线和实时业务统计的问题。

第二,数据链路也不存在冗余,明细层的计算一次即可,不需要离线再算一遍。

第三,数据口径天然一致。无论是离线的流程,还是实时的流程,都是一套引擎,一套 SQL,一套 UDF,一套开发人员,所以它天然是一致的,不存在实时和离线数据口径不一致的问题。文章来源地址https://www.toymoban.com/news/detail-498837.html

到了这里,关于Flink流批一体计算(1):流批一体和Flink概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink流批一体计算(4):Flink功能模块

    目录 Flink功能架构 Flink输入输出 Flink功能架构 Flink是分层架构的分布式计算引擎,每层的实现依赖下层提供的服务,同时提供抽象的接口和服务供上层使用。 Flink 架构可以分为4层,包括Deploy部署层、Core核心层、API层和Library层 部署层:主要涉及Flink的部署模式。Flink支持多种

    2024年02月10日
    浏览(50)
  • Flink流批一体计算(5):部署运行模式

    目录 集群运行模式 1.local模式 2.standalone模式 3.Flink on YARN模式 本地模式 Standalone 模式 Flink on Yarn 模式 集群运行模式 类似于 Spark , Flink 也有各种运行模式,其中主要支持三种: local 模式、 standalone 模式以及 Flink on YARN 模式。 每种模式都有特定的使用场景,接下来一起了解一

    2024年02月10日
    浏览(41)
  • 流批一体计算引擎-4-[Flink]消费kafka实时数据

    Python3.6.9 Flink 1.15.2消费Kafaka Topic PyFlink基础应用之kafka 通过PyFlink作业处理Kafka数据 PyFlink需要特定的Python版本,Python 3.6, 3.7, 3.8 or 3.9。 1.3.1 python3和pip3的配置 一、系统中安装了多个版本的python3 。 二、环境变量path作用顺序 三、安装Pyflink 1.3.2 配置Flink Kafka连接 (1)在https://mvnr

    2024年02月06日
    浏览(43)
  • Flink流批一体计算(10):PyFlink Tabel API

    简述 PyFlink 是 Apache Flink 的 Python API ,你可以使用它构建可扩展的批处理和流处理任务,例如实时数据处理管道、大规模探索性数据分析、机器学习( ML )管道和 ETL 处理。 如果你对 Python 和 Pandas 等库已经比较熟悉,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功

    2024年02月11日
    浏览(43)
  • Flink流批一体计算(16):PyFlink DataStream API

    目录 概述 Pipeline Dataflow 代码示例WorldCount.py 执行脚本WorldCount.py 概述 Apache Flink 提供了 DataStream API,用于构建健壮的、有状态的流式应用程序。它提供了对状态和时间细粒度控制,从而允许实现高级事件驱动系统。 用户实现的Flink程序是由Stream和Transformation这两个基本构建块组

    2024年02月11日
    浏览(45)
  • 流批一体计算引擎-7-[Flink]的DataStream连接器

    参考官方手册DataStream Connectors 一、预定义的Source和Sink 一些比较基本的Source和Sink已经内置在Flink里。 1、预定义data sources支持从文件、目录、socket,以及collections和iterators中读取数据。 2、预定义data sinks支持把数据写入文件、标准输出(stdout)、标准错误输出(stderr)和 sock

    2023年04月08日
    浏览(40)
  • Flink流批一体计算(18):PyFlink DataStream API之计算和Sink

    目录 1. 在上节数据流上执行转换操作,或者使用 sink 将数据写入外部系统。 2. File Sink File Sink Format Types  Row-encoded Formats  Bulk-encoded Formats  桶分配 滚动策略 3. 如何输出结果 Print 集合数据到客户端,execute_and_collect方法将收集数据到客户端内存 将结果发送到DataStream sink conne

    2024年02月11日
    浏览(38)
  • Flink流批一体计算(17):PyFlink DataStream API之StreamExecutionEnvironment

    目录 StreamExecutionEnvironment Watermark watermark策略简介 使用 Watermark 策略 内置水印生成器 处理空闲数据源 算子处理 Watermark 的方式 创建DataStream的方式 通过list对象创建 ​​​​​​使用DataStream connectors创建 使用Table SQL connectors创建 StreamExecutionEnvironment 编写一个 Flink Python DataSt

    2024年02月11日
    浏览(44)
  • Flink流批一体计算(11):PyFlink Tabel API之TableEnvironment

    目录 概述 设置重启策略 什么是flink的重启策略(Restartstrategy) flink的重启策略(Restartstrategy)实战 flink的4种重启策略 FixedDelayRestartstrategy(固定延时重启策略) FailureRateRestartstrategy(故障率重启策略) NoRestartstrategy(不重启策略) 配置State Backends 以及 Checkpointing Checkpoint 启用和配置

    2024年02月13日
    浏览(60)
  • Flink流批一体计算(12):PyFlink Tabel API之构建作业

    目录 1.创建源表和结果表。 创建及注册表名分别为 source 和 sink 的表 使用 TableEnvironment.execute_sql() 方法,通过 DDL 语句来注册源表和结果表 2. 创建一个作业 3. 提交作业Submitting PyFlink Jobs 1.创建源表和结果表。 创建及注册表名分别为 source 和 sink 的表 其中,源表 source 有一列

    2024年02月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包